Abstract
This paper introduces a new enhancement algorithm based on combination of different processing techniques. The method uses different methods at different stages of processing. In the beginning input image given to the algorithm is a portable gray map image and then Gaussian low pass filter is used to decompose the input image into low and high frequency components. On low frequency components we apply mathematical morphological operations and on high frequency components we apply edge enhanced algorithm. After this we combine processed low and high frequency components to get an enhanced image. Enhanced image is having better contrast and edge visibility comparing to the original image, but it contains noises. Wavelet transform is used to denoise the noisy image. The denoised image is then processed by using contrast limited adaptive histogram equalization(CLAHE) to have better edge preservation index (EPI) and contrast improvement index (EPI). The resulting image is then smoothed by passing the output image through a guided image filter(GIF).The edge preserve capacity and preservation of the naturalness of the GIF allows us to get better results.
The efficiency of any service or product, especially those related to medical field depends upon its applicability. The applicability for any service or products can be achieved by applying the basic principles of Software Engineering. Applicability of enhanced algorithms depends on parameters like the peak signal to noise ratio(PSNR),edge preservation index(EPI), etc. This paper focuses on introducing a model which highlights on a prototyping approach for highlighting the necessary details that will aid radiologist for the earlier detection of breast cancer.This paper also presents Design of the model, Implementation of the model and finally the results are analyzed by considering the quality metrics values like PSNR, EPI, CII.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Canadian Cancer Society, Facts on Breast Cancer (April 1989)
Kimori, Y.: Mathematical Morphology based approach to the Enhancement of Morphological Features in Medical images. Journal of Clinical Bioinformatics 1, 33 (2011)
Georgieva, V., Kountchev, R., Draganov, I.: An Adaptive Enhancement of X-Ray Images. In: Kountchev, R., Iantovics, B. (eds.) Adv. in Intell. Anal. of Med. Data & Decis. SCI, vol. 473, pp. 79–88. Springer, Heidelberg (2013)
Sakellaropoulos, P., et al.: A Wavelet-based Spatially Adaptive method for Mammographic Contrast Enhancement. Phys. Med. Biol. 48(6), 787–803 (2003)
He, K., Sun, J., Tang, X.: Guided image filtering. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 1–14. Springer, Heidelberg (2010)
Ito, K., Xiong, K.: Gaussian filters for nonlinear filtering problems. IEEE Transactions on Automatic Control 45(5), 910–927 (2000)
Zeng, F., Liu, L.: Contrast enhancement of mammographic images using guided image filtering. In: Tan, T., Ruan, Q., Chen, X., Ma, H., Wang, L. (eds.) IGTA 2013. CCIS, vol. 363, pp. 300–306. Springer, Heidelberg (2013), Tomasi, Manduchi, Tang: Bilateral filtering for gray and color images. IGTA 2013 81(1), 24–52 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Wani, I.U.I., Hanumantharaju, M.C., Gopalkrishna, M.T. (2015). Contrast Enhancement of Mammograms Images Based on Hybrid Processing. In: Satapathy, S., Biswal, B., Udgata, S., Mandal, J. (eds) Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014. Advances in Intelligent Systems and Computing, vol 328. Springer, Cham. https://doi.org/10.1007/978-3-319-12012-6_60
Download citation
DOI: https://doi.org/10.1007/978-3-319-12012-6_60
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-12011-9
Online ISBN: 978-3-319-12012-6
eBook Packages: EngineeringEngineering (R0)