PCA Based Medical Image Fusion in Ridgelet Domain | SpringerLink
Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 328))

Abstract

Medical image fusion facilitates the retrieval of complementary information from medical images and has been employed diversely for computer-aided diagnosis of diseases. This paper presents a combination of Principal Component Analysis (PCA) and ridgelet transform as an improved fusion approach for MRI and CT-scan. The proposed fusion approach involves image decomposition using 2D-Ridgelet transform in order to achieve a compact representation of linear singularities. This is followed by application of PCA as a fusion rule to improve upon the spatial resolution. Fusion Factor (FF) and Structural Similarity Index (SSIM) are used as fusion metrics for performance evaluation of the proposed approach. Simulation results demonstrate an improvement in visual quality of the fused image supported by higher values of fusion metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dasarathy, B.V.: Information Fusion in the Realm of Medical Applications – A Bibliographic Glimpse at its Growing Appeal. Information Fusion 13(1), 1–9 (2012)

    Article  Google Scholar 

  2. Schoder, H., Yeung, H.W., Gonen, M., Kraus, D., Larson, S.M.: Head and Neck Cancer: Clinical Usefulness and Accuracy of PET/CT Image Fusion. Radiology, 65–72 (2004)

    Google Scholar 

  3. Nakamoto, Y., Tarnai, K., Saga, T., Higashi, T., Hara, T., Suga, T., Koyama, T., Togashi, K.: Clinical Value of Image Fusion from MR and PET in Patients with Head and Neck Cancer. Molecular Imaging and Biology, 46–53 (2009)

    Google Scholar 

  4. Singh, R., Khare, A.: Fusion of Multimodal Images using Daubechies Complex Wavelet Transform- A Multiresolution Approach. Info. Fusion. 19, 49–60 (2014)

    Article  Google Scholar 

  5. Tu, T.M., Su, S.C., Shyu, H.C., Huang, P.S.: A New Look at IHS-Like Image Fusion Methods. Information Fusion 2(3), 177–186 (2001)

    Article  Google Scholar 

  6. Gillespie, A.R., Kahle, A.B., Walker, R.E.: Color enhancement of highly correlated images—II. Channel Ratio and ‘Chromaticity’ Transformation Techniques. Remote Sens. Environ. 22, 343–365 (1987)

    Article  Google Scholar 

  7. Mallat, S.: A Theory for Multi-Resolution Signal: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

    Article  MATH  Google Scholar 

  8. Shensa, M.J.: The discrete wavelet transform: Wedding the à Trous and Mallat algorithms. IEEE Trans. Signal Process. 40(10), 2464–2482 (1992)

    Article  MATH  Google Scholar 

  9. ALEjaily, A.M.: Fusion of Remote Sensing Images Using Contourlet Transform. Innovations and Advanced Techniques in Systems, Computing Sciences and Software Engineering, 213–218 (2008)

    Google Scholar 

  10. Cunha, L.D., Zhou, J.P.: The Non-Subsampled Contourlet Transform: Theory, Design, and Applications. IEEE Tran. on Image Processing 15(10), 3089–3101 (2006)

    Article  Google Scholar 

  11. Luo, Y., Liu, R., Zhu, Y.Z.: Fusion of Remote Sensing Image Based on the PCA & Atrous Wavelet Transform. The International Archives of the Photogrammetry, Remote Sensing and Spatial Info. Sciences. XXXVII. Part B7, 1155–1158 (2008)

    Google Scholar 

  12. Petrovic, V.S., Costas, S.X.: Gradient-Based Multiresolution Image Fusion. IEEE Transactions on Image Processing 13(2), 228–237 (2004)

    Article  Google Scholar 

  13. Sadhasivam, S.K., Keerthivasan, M.K., Muttan, S.: Implementation of Max Principle with PCA in Image Fusion for Surveillance and Navigation Application. Electronic Letters on Computer Vision and Image Analysis 10(1), 1–10 (2011)

    Google Scholar 

  14. Xu, Z.: Medical Image Fusion Using Multi-Level Local Extrema. Elsevier-Information Fusion 19, 38–48 (2014)

    Article  Google Scholar 

  15. Jain, A., Singh, S., Bhateja, V.: A Robust Approach for Denoising and Enhancement of Mammographic Breast Masses. International Journal on Convergence Computing, Inderscience Publishers 1(1), 38–49 (2013)

    Article  Google Scholar 

  16. Srivastava, A., Alankrita, Raj, A., Bhateja, V.: Combination of Wavelet Transform and Morphological Filtering for Enhancement of Magnetic Resonance Images. In: Snasel, V., Platos, J., El-Qawasmeh, E. (eds.) ICDIPC 2011, Part I. Communications in Computer and Information Science, vol. 188, pp. 460–474. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Bhateja, V., Urooj, S., Pandey, A., Misra, M., Lay-Ekuakille, A.: A Polynomial Filtering Model for Enhancement of Mammogram Lesions. In: Proc. of IEEE Int. Symposium on Medical Measurements and Applications, pp. 97–100 (2013)

    Google Scholar 

  18. Siddhartha, Gupta, R., Bhateja, V.: A Log-Ratio based Unsharp Masking (UM) Approach for Enhancement of Digital Mammograms. In: Proc. CUBE Int. Information Tech. Conference & Exhibition, pp. 26–31 (2012)

    Google Scholar 

  19. Bhateja, V., Devi, S.: An Improved Non-Linear Transformation Function for Enhancement of Mammographic Breast Masses. In: Proc. 3rd International Conference on Electronics & Computer Technology, vol. 5, pp. 341–346 (2011)

    Google Scholar 

  20. Alankrita., Raj, A., Shrivastava, A., Bhateja, V.: Contrast Improvement of Cerebral MRI Features using Combination of Non-Linear Enhancement Operator and Morphological Filter. In: Proc. of (IEEE) International Conference on Network and Computational Intelligence (ICNCI 2011), Zhengzhou, China, vol. 4, pp. 182–187 (2011)

    Google Scholar 

  21. Siddhartha., Gupta, R., Bhateja, V.: An Improved Unsharp Masking Algorithm for Enhancement of Mammographic Masses. In: Proc. of IEEE Students Conference on Engineering and Systems (SCES-2012), Allahabad, India, pp. 234–237 (March 2012)

    Google Scholar 

  22. Siddhartha., Gupta, R., Bhateja, V.: A New UnSharp Masking Algorithm for Mammography using Non-Linear Enhancement Function. In: Proc. of the (Springer) International Conference on Information Systems Design and Intelligent Applications (INDIA 2012), Vishakhapatnam, India, pp. 779–786 (January 2012)

    Google Scholar 

  23. Pandey, A., Yadav, A., Bhateja, V.: Design of New Volterra Filter for Mammogram Enhancement. In: Satapathy, S.C., Udgata, S.K., Biswal, B.N. (eds.) Proceedings of Int. Conf. on Front. of Intell. Comput. AISC, vol. 199, pp. 143–151. Springer, Heidelberg (2013)

    Google Scholar 

  24. Bhateja, V., Urooj, S., Pandey, A., Misra, M., Lay-Ekuakille, A.: Improvement of Masses Detection in Digital Mammograms employing Non-Linear Filtering. In: Proc. of (IEEE) International Multi-Conference on Automation, Computing, Control, Communication and Compressed Sensing (iMac4s-2013), Palai-Kottayam, Kerala (India), vol. 119, pp. 406–408 (March 2013)

    Google Scholar 

  25. Pandey, A., Yadav, A., Bhateja, V.: Contrast Improvement of Mammographic Masses Using Adaptive Volterra Filter. In: Proc. of (Springer) 4th International Conference on Signal and Image Processing (ICSIP 2012), Coimbatore, India, vol. 2, pp. 583–593 (December 2012)

    Google Scholar 

  26. Bhateja, V., Misra, M., Urooj, S., Lay-Ekuakille, A.: A Robust Polynomial Filtering Framework for Mammographic Image Enhancement from Biomedical Sensors. IEEE Sensors Journal 13(11), 4147–4156 (2013)

    Article  Google Scholar 

  27. Pandey, A., Yadav, A., Bhateja, V.: Volterra Filter Design for Edge Enhancement of Mammogram Lesions. In: Proc. of (IEEE) 3rd International Advance Computing Conference (IACC 2013), Ghaziabad (U.P.), India, pp. 1219–1222 (February 2013)

    Google Scholar 

  28. Bhateja, V., Devi, S.: A Novel Framework for Edge Detection of Microcalcifications using a Non-Linear Enhancement Operator and Morphological Filter. In: Proc. of (IEEE) 3rd International Conference on Electronics & Computer Technology (ICECT-2011), Kanyakumari (India), vol. 5, pp. 419–424 (April 2011)

    Google Scholar 

  29. Alankrita., Raj, A., Shrivastava, A., Bhateja, V.: Computer Aided Detection of Brain Tumor in MR Images. International Journal on Engineering and Technology (IACSIT-IJET) 3, 523–532 (2011)

    Google Scholar 

  30. Granai, L., Moschetti, F., Vandergheynst, P.: Ridgelet Transform Applied to Motion Compensated Images. In: IEEE International Conference on Acoustics, Speech, & Signal Processing, April 6-10, pp. 561–564 (2003)

    Google Scholar 

  31. Ali, F.E., El-Dokany, I.M., Saad, A.A., Abd El-Samie, F.E.: Curvelet Fusion of MR and CT Images. Progress in Electromagnetics Research 3, 215–224 (2008)

    Article  Google Scholar 

  32. Naidu, V.P.S., Rao, J.R.: Pixel-level Image Fusion using Wavelets and Principal Component Analysis. Defence Science Journal 58(3), 338–352 (2008)

    Google Scholar 

  33. Gupta, P., Tripathi, N., Bhateja, V.: Multiple Distortion Pooling Image Quality Assessment. International Journal on Convergence Computing, Inderscience Publishers 1(1), 60–72 (2013)

    Article  Google Scholar 

  34. Gupta, P., Srivastava, P., Bharadwaj, S., Bhateja, V.: A HVS based Perceptual Quality Estimation Measure for Color Images. ACEEE International Journal on Signal & Image Processing (IJSIP) 3(1), 63–68 (2012)

    Google Scholar 

  35. Bhateja, V., Devi, S.: A Reconstruction Based Measure for Assessment of Mammogram Edge-Maps. In: Satapathy, S.C., Udgata, S.K., Biswal, B.N. (eds.) Proceedings of Int. Conf. on Front. of Intell. Comput. AISC, vol. 199, pp. 741–746. Springer, Heidelberg (2013)

    Google Scholar 

  36. Trivedi, M., Jaiswal, A., Bhateja, V.: A New Contrast Measurement Index Based on Logarithmic Image Processing Model. In: Satapathy, S.C., Udgata, S.K., Biswal, B.N. (eds.) Proceedings of Int. Conf. on Front. of Intell. Comput. AISC, vol. 199, pp. 715–723. Springer, Heidelberg (2013)

    Google Scholar 

  37. Jaiswal, A., Trivedi, M., Bhateja, V.: A No-Reference Contrast Assessment Index based on Foreground and Background. In: Proc. 2nd Students Conference on Engineering and Systems, pp. 460–464 (2013)

    Google Scholar 

  38. Bhateja, V., Srivastava, A., Kalsi, A.: Reduced Reference IQA based on Structural Dissimilarity. In: Proc. Int. Conf. on Signal Proc. and Integ, pp. 63–68 (2014)

    Google Scholar 

  39. Piella, G., Heijmans, H.: A New Quality Metric for Image Fusion. In: 2003 International Conference on Image Processing, Barcelona, Spain, (September 14, 2003)

    Google Scholar 

  40. Bhateja, V., Srivastava, A., Kalsi, A.: Fast SSIM Index for Color Images Employing Reduced-Reference Evaluation. In: Satapathy, S.C., Udgata, S.K., Biswal, B.N. (eds.) FICTA 2013. AISC, vol. 247, pp. 451–458. Springer, Heidelberg (2014)

    Google Scholar 

  41. Zheng, Y., Essock, E.A., Hansen, B.C.: An Advanced Image Fusion Algorithm Based on Wavelet Transform –Incorporation with PCA and Morphological Processing. In: Proc. SPIE, vol. 5298, pp. 177–187 (2004)

    Google Scholar 

  42. Yang, B., Li, S.: Pixel-Level Image fusion with Simultaneous Orthogonal Matching Pursuit. Information Fusion 13, 10–19 (2012)

    Article  Google Scholar 

  43. Virmani, J., Kumar, V., Kalra, N., Khandelwal, N.: SVM-Based characterization of liver ultrasound images using wavelet packet texture descriptors. Journal of Digital Imaging 26(3), 530–543 (2013)

    Article  Google Scholar 

  44. Virmani, J., Kumar, V., Kalra, N., Khandelwal, N.: A comparative study of computer-aided classification systems for focal hepatic lesions from B-mode ultrasound. Journal of Medical Engineering and Technology 37(4), 292–306 (2013)

    Article  Google Scholar 

  45. Virmani, J., Kumar, V., Kalra, N., Khandelwal, N.: PCA-SVM based CAD System for focal liver lesions from B-Mode ultrasound. Defence Science Journal 63(5), doi:10.1007/s10278-014-9685-0

    Google Scholar 

  46. Virmani, J., Kumar, V., Kalra, N., Khandelwal, N.: Neural network ensemble based CAD system for focal liver lesions using B-mode ultrasound. Journal of Digital Imaging, doi:10.1007/s10278-014-9685-0

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhinav Krishn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Krishn, A., Bhateja, V., Himanshi, Sahu, A. (2015). PCA Based Medical Image Fusion in Ridgelet Domain. In: Satapathy, S., Biswal, B., Udgata, S., Mandal, J. (eds) Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014. Advances in Intelligent Systems and Computing, vol 328. Springer, Cham. https://doi.org/10.1007/978-3-319-12012-6_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12012-6_52

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12011-9

  • Online ISBN: 978-3-319-12012-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics