Recognizing Handwritten Devanagari Words Using Recurrent Neural Network | SpringerLink
Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 328))

Abstract

recognizing lines of handwritten text is a difficult task. Most recent evolution in the field has been made either through better-quality pre processing or through advances in language modeling. Most systems rely on hidden Markov models that have been used for decades in speech and handwriting recognition. So an approach is proposed in this paper which is based on a type of recurrent neural network, in particularly designed for sequence labeling tasks where the data is hard to segment and contains long-range bidirectional interdependencies. Recurrent neural networks (RNN) have been successfully applied for recognition of cursive handwritten documents, in scripts like English and Arabic. A regular recurrent neural network (RNN) is extended to a bidirectional recurrent neural network (BRNN).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Graves, A., Liwicki, M., Fernandez, S., Bertolami, R., Bunke, H., Schmidhuber, J.: A novel connectionist system for unconstrained handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 855–868 (2009)

    Article  Google Scholar 

  2. Vinciarelli, A.: Online and offline handwriting recognition: A comprehensive survey. Pattern Recognition 35, 1433–1446 (2002)

    Article  MATH  Google Scholar 

  3. Graves, A., Fernández, S., Schmidhuber, J.: Bidirectional LSTM Networks for Improved Phoneme Classification and Recognition. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 799–804. Springer, Heidelberg (2005)

    Google Scholar 

  4. Graves, A., Fernandez, S., Liwicki, M., Bunke, H., Schmidhuber, J.: Unconstrained Online Handwriting Recognition with Recurrent Neural Networks. Advances in Neural Information Processing Systems 20, 1–7 (2008)

    Google Scholar 

  5. Shaw, Parui, S.K., Shridhar, M.: A segmentation based approach to offline handwritten Devanagari word recognition. In: Proc. IEEE Int. Conf. Inf. Technol., pp. 256–257 (2008)

    Google Scholar 

  6. Shaw, Parui, S.K., Shridhar, M.: Off-line handwritten Devanagari word recognition: A holistic approach based on directional chain code feature and HMM. In: Proc. Int. Conf. Inf. Technol., pp. 203–208 (2008)

    Google Scholar 

  7. Rajput, G.G., Mali, S.M.: Fourier descriptor based isolated Marathi handwritten numeral recognition. Int. J. Comput. Appl. 3(4), 9–13 (2010)

    Google Scholar 

  8. Liwicki, M., Graves, A., Bunke, H., Schmidhuber, J.: A Novel Approach to On-Line Handwriting Recognition Based on Bidirectional Long Short-Term Memory Networks. In: ICDAR 2007, pp. 367–371 (2007)

    Google Scholar 

  9. Hanmandlu, M., Agrawal, P., Lall, B.: Segmentation of handwritten Hindi text: A structural approach. Int. J. Comput. Process. Lang. 22(1), 1–20 (2009)

    Article  Google Scholar 

  10. Schuster, M., Paliwal, K.K.: Bidirectional Recurrent Neural Networks. IEEE Trans. Signal Processing 45, 2673–2681 (1997)

    Article  Google Scholar 

  11. Morillot, O., Likforman-Sulem, L., Grosicki, E.: Comparative study of HMM and BLSTM segmentation-free approaches for the recognition of handwritten text-lines, pp. 783–787. IEEE (2013)

    Google Scholar 

  12. Agrawal, P., Hanmandlu, M., Lall, B.: Coarse classification of handwritten Hindi characters. Int. J. Advanced Sci. Technol. 10, 43–54 (2009)

    Google Scholar 

  13. Jayadevan, R., Kolhe, S.R., Patil, P.M., Pal, U.: Offline Recognition of Devanagari Script: A Survey. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 782–796 (November 17, 2011)

    Google Scholar 

  14. Arora, S., Bhatcharjee, D., Nasipuri, M., Malik, L.: A two stage classification approach for handwritten Devanagari characters. In: Proc. Int. Conf. Comput. Intell. Multimedia Appl., pp. 399–403 (2007)

    Google Scholar 

  15. Kaur, S.: Recognition of handwritten Devanagari script using features based on Zernike moments, zoning and neural network classifier. M.Tech Thesis, Dept. Comput. Sci. Eng., Punjabi University, Patiala, India (2004)

    Google Scholar 

  16. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)

    Article  Google Scholar 

  17. Kumar, S.: Performance comparison of features on Devanagari handprinted dataset. Int. J. Recent Trends 1(2), 33–37 (2009)

    Google Scholar 

  18. Steinherz, T., Rivlin, E., Intrator, N.: Offline cursive script word recognition - a survey. International Journal of Document Analysis and Recognition 2(2), 90–110 (1999)

    Google Scholar 

  19. Pal, U., Sharma, N., Wakabayashi, T., Kimura, F.: Off-line handwritten character recognition of Devanagari script. In: Proc. 9th Conf. Document Anal. Recognit., pp. 496–500 (2007)

    Google Scholar 

  20. Pal, U., Chanda, S., Wakabayashi, T., Kimura, F.: Accuracy improvement of Devanagari character recognition combining SVM and MQDF. In: Proc. 11th Int. Conf. Frontiers Handwrit. Recognit., pp. 367–372 (2008)

    Google Scholar 

  21. Frinken, V., Fornés, A., Lladós, J., Ogier, J.-M.: Bidirectional language model for handwriting recognition. In: Gimel’farb, G., Hancock, E., Imiya, A., Kuijper, A., Kudo, M., Omachi, S., Windeatt, T., Yamada, K. (eds.) SSPR & SPR 2012. LNCS, vol. 7626, pp. 611–619. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonali G. Oval .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Oval, S.G., Shirawale, S. (2015). Recognizing Handwritten Devanagari Words Using Recurrent Neural Network. In: Satapathy, S., Biswal, B., Udgata, S., Mandal, J. (eds) Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014. Advances in Intelligent Systems and Computing, vol 328. Springer, Cham. https://doi.org/10.1007/978-3-319-12012-6_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12012-6_45

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12011-9

  • Online ISBN: 978-3-319-12012-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics