Abstract
In this paper we propose and compare the use of two iterative solvers using the Crank-Nicolson finite difference method, for image denoising via Partial differential equations (PDE) models such as Bilateral-filter-based model. The solvers considered here are: Successive-over-Relaxation (SOR) and an advanced solver known as Hybrid Bi-Conjugate Gradient Stabilized (Hybrid BiCGStab) method. We demonstrate that proposed hybrid BiCGStab solver for denoising yields better performance in terms of MSSIM and PSNR, and is more efficient than existing SOR solver and a state-of-the-art approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Witkin, A.P.: Scale-space filtering: A new approach to multi-scale description. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 1984, vol. 9, pp. 150–153. IEEE (1984)
Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7), 629–639 (1990)
Weickert, J.: Anisotropic diffusion in image processing, vol. 1. Teubner Stuttgart (1998)
Kichenassamy, S.: The perona–malik paradox. SIAM Journal on Applied Mathematics 57(5), 1328–1342 (1997)
Catté, F., Lions, P.L., Morel, J.M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical analysis 29(1), 182–193 (1992)
Bazan, C., Blomgren, P.: Image smoothing and edge detection by nonlinear diffusion and bilateral filter. In: CSRCR 2007, vol. 21, pp. 2–15 (2007)
Bazán, C., Miller, M., Blomgren, P.: Structure enhancement diffusion and contour extraction for electron tomography of mitochondria. Journal of Structural Biology 166(2), 144–155 (2009)
Gh, M., Bazan, C., Frey, G.: olume se spatia esholdin xtraction (2010)
Weickert, J., Romeny, B.T.H., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Transactions on Image Processing 7(3), 398–410 (1998)
Thomas, J.W.: Numerical partial differential equations: finite difference methods, vol. 22. Springer (1995)
Wang, W., Shi, Y.: An image denoising algorithm in the matrix form. In: 2011 International Conference on Multimedia Technology (ICMT), pp. 176–179. IEEE (2011)
Crank, J., Nicolson, P.: A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Advances in Computational Mathematics 6(3), 207–226 (1996)
Saad, Y.: Iterative methods for sparse linear systems, 2nd edn. SIAM, Philadelphia (2003)
Sickel, S., Yeung, M.C., Held, M.J.: A comparison of some iterative methods in scientific computing. Summer Reserch Apprentice Program (2005)
Sleijpen, G.L., Van der Vorst, H.A.: Hybrid bi-conjugate gradient methods for cfd problems. Computational Fluid Dynamics Review 1995, 457–476 (1995)
Mrázek, P., Navara, M.: Selection of optimal stopping time for nonlinear diffusion filtering. International Journal of Computer Vision 52(2-3), 189–203 (2003)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004)
Wang, Z., Bovik, A.C.: Mean squared error: love it or leave it? a new look at signal fidelity measures. IEEE Signal Processing Magazine 26(1), 98–117 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Jain, S.K., Ray, R.K., Bhavsar, A. (2015). A Comparative Study of Iterative Solvers for Image De-noising. In: Satapathy, S., Biswal, B., Udgata, S., Mandal, J. (eds) Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014. Advances in Intelligent Systems and Computing, vol 328. Springer, Cham. https://doi.org/10.1007/978-3-319-12012-6_34
Download citation
DOI: https://doi.org/10.1007/978-3-319-12012-6_34
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-12011-9
Online ISBN: 978-3-319-12012-6
eBook Packages: EngineeringEngineering (R0)