Automatic Video Scene Segmentation to Separate Script and Recognition | SpringerLink
Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 328))

  • 2293 Accesses

Abstract

Text or character detection in images or videos is a challenging problem to achieve video contents retrieval. In this paper work we propose to improved VTDAR (Video Text Detection and Recognition) Template Matching algorithm that applied for the automatic extraction of text from image and video frames. Video Optical Character Recognition using template matching is a system model that is useful to recognize the character, upper, lower alphabet, digits& special character by comparing two images of the alphabet. The objectives of this system model are to develop a model for the Video Text Detection and Recognition system and to implement the template matching algorithm in developing the system model. The template matching techniques are more sensitive to font and size variations of the characters than the feature classification methods. This system tested the 50 videos with 1250 video key-frames and text line 1530. In this system 92.15% of the Character gets recognized successfully using Texture-based approaches to automatic detection, segmentation and recognition of visual text occurrences in images and video frames.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hua, X.-S., Wenyin, L., Zhang, H.-J.: Automatic Performance Evaluation for Video Text Detection. In: Sixth International Conference on Document Analysis and Recognition (ICDAR 2001), Seattle, Washington, U.S.A, September 10-13, pp. 545–550 (2001)

    Google Scholar 

  2. Junga, K., Kimb, K., Jain, A.K.: Text information extraction in images and video: a survey. Published by Elsevier Ltd. (2003)

    Google Scholar 

  3. Canny, J.: A Computational Approach to Edge Detection. IEEE Trans. Pattern Analysis and Machine Intelligence 8, 679–714 (1986)

    Article  Google Scholar 

  4. Kim, H.K.: Efficcient automatic text location methodand content-based indexing and structuring of video database. J. Visual Commun. Image Representation 7(4), 336–344 (1996)

    Article  Google Scholar 

  5. Zhong, Y., Jain, A.K.: Object localization using color, texture, and shape. Pattern Recognition 33, 671–684 (2000)

    Article  Google Scholar 

  6. Antani, S., Kasturi, R., Jain, R.: A survey on the use of pattern recognition methods for abstraction, indexing, and retrieval of Images and video. Pattern Recognition, 945–965 (2002)

    Google Scholar 

  7. Jie, X., Hua, X.-S., Chen, X.-R., Wenyin, L., Zhang, H.: A Video Text Detection and Recognition System. In: IEEE International (2009)

    Google Scholar 

  8. Shivakumara, P., Huang, W., Tan, C.L.: Efficient Video Text Detection Using Edge Features. In: The Eighth IAPR Workshop on Document Analysis Systems (DAS 2008), Nara, Japan, pp. 307–314 (2008)

    Google Scholar 

  9. Lienhart, R., Stuber, F.: Automatic text recognition in digital videos. In: Praktische Informatik IV, University of Mannheim, 68131 Mannheim, Germany

    Google Scholar 

  10. Ye, Q., Gao, W., Wang, W., Zeng, W.: A Robust Text Detection Algorithm in Images and Video Frames. In: IEEE ICICS-PCM, pp. 802–806 (2003)

    Google Scholar 

  11. Aghajari, G., Shanbehzadeh, J., Sarrafzadeh, A.: A Text Localization Algorithm in Color Image via New Projection Profile. In: IMECS, Hong Kong (2010)

    Google Scholar 

  12. Ghorpade, J., Palvankar, R.: Extracting Text from Video. Signal & Image Processing, An International Journal (SIPIJ) 2(2) (2011)

    Google Scholar 

  13. Gaikwad, B., Manza, R.R.: Critical review on video scene segmentation and Recognition. International Journal of Computer Information Systems (IJCIS) 3(3) (2011)

    Google Scholar 

  14. Manza, R.R., Gaikwad, B.P.: A Video Edge Detection Using Adaptive Edge Detection Operator. CiiT International Journal of Digital Image Processing (2012), doi: DIP012012006, ISSN: 0974–9691 & Online: ISSN: 0974-9586

    Google Scholar 

  15. Manza, R.R., Gaikwad, B.P., Manza, G.R.: Use of Edge Detection Operators for Agriculture Video Scene Feature Extraction from Mango Fruits. Advances in Computational Research 4(1), 50–53 (2012)

    Google Scholar 

  16. Manza, R.R., Gaikwad, B.P., Manza, G.R.: Used of Various Edge Detection Operators for Feature Extraction in Video Scene. In: Proc. of the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering, ICACEEE 2012 (2012) ISBN: 978-981-07-1847-3

    Google Scholar 

  17. Sumathi, C.P., Santhanam, T., Priya, N.: Techniques and challenges of automatic text extraction in complex images: a survey. Journal of Theoretical and Applied Information Technology 35(2) (2012)

    Google Scholar 

  18. Spitz, A.L.: Determination of the Script and Language content of Document Images. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(3) (1997)

    Google Scholar 

  19. Sharma, S.: Extraction of Text Regions in Natural Images. Masters Project Report (Spring 2007)

    Google Scholar 

  20. Mollah, A.F., Majumder, N.: Design of an Optical Character Recognition System for Camera based Handheld Devices. IJCSI 8(4(1)) (2011)

    Google Scholar 

  21. Su, Y.-M., Hsieh, C.-H.: A Novel Model-Based Segmentation Approach To Extract Caption Contents On Sports Videos. In: IEEE International Conference on Multimedia & Expo, pp. 1829–1832 (2006)

    Google Scholar 

  22. Leon, M., Vilaplana, V., Gasull, A., Marques, F.: Caption Text Extraction for Indexing Purposes Using a Hierarchical Region-Based Image Model. In: Proceedings of the 16th IEEE International Conference on Image Processing, pp. 1869–1872 (2009)

    Google Scholar 

  23. Zhong, Y., Zhang, H., Jain, A.K.: Automatic Caption Localization in Compressed Video. In: International Conference on Image Processing, vol. 2, pp. 96–100 (1999)

    Google Scholar 

  24. Liu, X., Wang, W.: Extracting Captions From Videos Using Temporal Feature. In: Proceedings of the International Conference on ACM Multimedia, pp. 843–846 (2010)

    Google Scholar 

  25. Lilo, B., Tang, X., Liu, J., Zhang, H.: Video Caption Detection and Extraction Using Temporal Information. In: International Conference on Image Processing, vol. 1, pp. I297–I300 (2003)

    Google Scholar 

  26. Gaikwad, B.P., Manza, R.R., Manza, G.R.: Video scene segmentation to separate script. In: Advance Computing Conference (IACC). IEEE xplore IEEE (2013) 978-1-4673-4527-9

    Google Scholar 

  27. Gaikwad, B.P., Manza, R.R., Manza, G.R.: Automatic Video Scene Segmentation to Separate Script for OCR. International Journal in Computer Application (IJCA) (2014) ISBN: 973-93-80880-06-7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharatratna P. Gaikwad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gaikwad, B.P., Manza, R.R., Manza, G.R. (2015). Automatic Video Scene Segmentation to Separate Script and Recognition. In: Satapathy, S., Biswal, B., Udgata, S., Mandal, J. (eds) Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014. Advances in Intelligent Systems and Computing, vol 328. Springer, Cham. https://doi.org/10.1007/978-3-319-12012-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12012-6_25

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12011-9

  • Online ISBN: 978-3-319-12012-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics