Online Multiple Palindrome Pattern Matching | SpringerLink
Skip to main content

Online Multiple Palindrome Pattern Matching

  • Conference paper
String Processing and Information Retrieval (SPIRE 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8799))

Included in the following conference series:

  • 635 Accesses

Abstract

A palindrome is a string that reads the same forward and backward. We say that two strings of the same length are pal-equivalent if for each possible center they have the same length of the maximal palindrome. Given a text T of length n and a set of patterns P 1,…,P k , we study the online multiple palindrome pattern matching problem that finds all pairs of an index i and a pattern P j such that T[i−|P j | + 1:i] and P j are pal-equivalent. We solve the problem in O(m k M) preprocessing time and O(m k n) query time using O(m k M) space, where M is the sum of all pattern lengths and m k is the longest pattern length.

This research was supported by the Basic Science Research Program through NRF funded by MEST (2012R1A1A2044562).

Kim was supported by NRF (National Research Foundation of Korea) Grant funded by the Korean Government (NRF-2013-Global Ph.D. Fellowship Program).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5491
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 6864
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aho, A.V., Corasick, M.J.: Efficient string matching: An aid to bibliographic search. Communications of the ACM 18(6), 333–340 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allouche, J.-P., Baake, M., Cassaigne, J., Damanik, D.: Palindrome complexity. Theoretical Computer Science 292(1), 9–31 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anisiu, M.-C., Anisiu, V., Kása, Z.: Total palindrome complexity of finite words. Discrete Mathematics 310(1), 109–114 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brlek, S., Hamel, S., Nivat, M., Reutenauer, C.: On the palindromic complexity of infinite words. International Journal of Foundations of Computer Science 15(2), 293–306 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of de luca and rauzy. Theoretical Computer Science 255(1-2), 539–553 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Glen, A., Justin, J., Widmer, S., Zamboni, L.Q.: Palindromic richness. European Journal of Combinatorics 30(2), 510–531 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Groult, R., Prieur, É., Richomme, G.: Counting distinct palindromes in a word in linear time. Information Processing Letters 110(20), 908–912 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press (1997)

    Google Scholar 

  9. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison–Wesley (1979)

    Google Scholar 

  10. Tomohiro, I., Inenaga, S., Bannai, H., Takeda, M.: Counting and verifying maximal palindromes. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 135–146. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Tomohiro, I., Inenaga, S., Bannai, H., Takeda, M.: Palindrome pattern matching. Theoretical Computer Science 483, 162–170 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Manacher, G.: A new linear-time “on-line” algorithm for finding the smallest initial palindrome of a string. Journal of the ACM 22(3), 346–351 (1975)

    Article  MATH  Google Scholar 

  13. Wood, D.: Theory of Computation. Harper & Row (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kim, H., Han, YS. (2014). Online Multiple Palindrome Pattern Matching. In: Moura, E., Crochemore, M. (eds) String Processing and Information Retrieval. SPIRE 2014. Lecture Notes in Computer Science, vol 8799. Springer, Cham. https://doi.org/10.1007/978-3-319-11918-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11918-2_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11917-5

  • Online ISBN: 978-3-319-11918-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics