Abstract
In this paper we improve image segmentation based on texture properties. The already good results achieved using learned dictionaries and Gaussian smoothing are improved by minimizing an energy function that has the form of a Potts model. The proposed \(\alpha \)-erosion method is a greedy method that essentially relabels the pixels one by one and is computationally very fast. It can be used in addition to, or instead of, Gaussian smoothing to regularize the label images in supervised texture segmentation problems. The proposed \(\alpha \)-erosion method achieves excellent results on a much used set of test images: on average we get 2.9 % wrongly classified pixels. Gaussian smoothing gives 10 % and the best results reported earlier give 4.5 %.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Besag, J.: On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society. Series B (Methodological) 48(3), 259–302 (1986)
Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Machine Intell. 26(9), 1124–1137 (2004)
Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Machine Intell. 23(11), 1222–1239 (2001)
Delong, A., Gorelick, L., Veksler, O., Boykov, Y.: Minimizing energies with hierarchical costs. Int. J. Comput. Vision 100(1), 38–58 (2012)
Elad, M.: Sparse and Redundant Representations, from Theory to Applications in Signal and Image Processing. Springer, New York (2010)
Kohli, P., Ladický, L., Torr, P.H.S.: Robust higher order potentials for enforcing label consistency. Int. J. Comput. Vision 82(3), 302–324 (2009)
Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts. IEEE Trans. Pattern Anal. Machine Intell. 26, 147–159 (2004)
Mäenpää, T., Pietikäinen, M., Ojala, T.: Texture classification by multi-predicate local binary pattern operators. In: Proc. ICPR (2000)
Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Discriminative learned dictionaries for local image analysis. In: 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (June 2008)
Ojala, T., Mäenpää, T., Pietikäinen, M., Viertola, J., Kyllönen, J., Huovinen, S.: Outex - new framework for empirical evaluation of texture analysis algorithms. In: Proc. 16th Int. Conf. Pattern Recognition (2002)
Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Machine Intell. 24(7), 971–987 (2002)
Ojala, T., Valkealahti, K., Oja, E., Pietikäinen, M.: Texture discrimination with multidimensional distributions of signed gray-level differences. Pattern Recognition 34(3), 727–739 (2001)
Randen, T., Husøy, J.H.: Filtering for texture classification: A comparative study. IEEE Trans. Pattern Anal. Machine Intell. 21(4), 291–310 (1999)
Skretting, K.: Sparse Signal Representation using Overlapping Frames. PhD thesis, NTNU Trondheim and Høgskolen i Stavanger (October 2002), http://www.ux.uis.no/~karlsk/
Skretting, K., Engan, K.: Recursive least squares dictionary learning algorithm. IEEE Trans. Signal Processing 58, 2121–2130 (2010)
Skretting, K., Husøy, J.H.: Texture classification using sparse frame based representations. EURASIP Journal on Applied Signal Processing 2006, Article ID 52561 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Skretting, K., Engan, K. (2014). Energy Minimization by \(\alpha \)-Erosion for Supervised Texture Segmentation. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2014. Lecture Notes in Computer Science(), vol 8814. Springer, Cham. https://doi.org/10.1007/978-3-319-11758-4_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-11758-4_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11757-7
Online ISBN: 978-3-319-11758-4
eBook Packages: Computer ScienceComputer Science (R0)