Meta-learning for Adaptive Image Segmentation | SpringerLink
Skip to main content

Meta-learning for Adaptive Image Segmentation

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8814))

Included in the following conference series:

  • 2208 Accesses

Abstract

Most image segmentations require control parameters setting that depends on the variability of processed images characteristics. This paper introduces a meta-learning system using stacked generalization to adjust segmentation parameters within an object-based analysis of very high resolution urban satellite images. The starting point of our system is the construction of the knowledge database from the concatenation of images characterization and their correct segmentation parameters. Meta-knowledge database is then built from the integration of base-learners performance evaluated by cross-validation. It will allow knowledge transfer to second-level learning and the generation of the meta-classifier that will predict new image segmentation parameters. An experimental study on a satellite image covering the urban area of Strasbourg region enabled us to evaluate the effectiveness of the adopted approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blaschke, T.: Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing 65(1), 2–16 (2010)

    Article  Google Scholar 

  2. Cleve, C., Kelly, M., Kearns, F., Moritz, M.: Classification of the wildland urban interface: A comparison of pixel and object-based classifications using high-resolution aerial photography. Computers, Environment and Urban Systems 32(4), 317–326 (2008)

    Article  Google Scholar 

  3. Bhanu, B., Peng, J.: Adaptive integrated image segmentation and object recognition. IEEE Transactions on Systems Man and Cybernetics 30, 427–441 (2000)

    Article  Google Scholar 

  4. Bhanu, B., Lee, M., Ming, J.: Adaptive image segmentation using a genetic algorithm. IEEE Transactions on Systems, Man, and Cybernetics 25(12), 1543–1567 (1995)

    Article  Google Scholar 

  5. Derivaux, S., Lefevre, S., Wemmert, C., Korczak, J.: On machine learning in watershed segmentation. In: IEEE International Workshop on Machine Learning in Signal Processing (MLSP), pp. 187–192 (2007)

    Google Scholar 

  6. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)

    Article  Google Scholar 

  7. Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artificial Intelligence Review 18(2), 77–95 (2002)

    Article  Google Scholar 

  8. Vincent, L., Soille, P.: Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Pattern Recognition and Machine Intelligence 13(6), 583–598 (1991)

    Article  Google Scholar 

  9. Derivaux, S., Lefevre, S., Wemmert, C., Korczak, J.: Watershed Segmentation of Remotely Sensed Images Based on a Supervised Fuzzy Pixel Classification. In: Proceedings of the IEEE International Geosciences And Remote Sensing Symposium (IGARSS), pp. 3712–3715 (2006)

    Google Scholar 

  10. Attig, A., Perner, P.: A study on the case image description for learning the model of the watershed segmentation. Transactions on Case-Based Reasoning 2(1), 41–53 (2009)

    Google Scholar 

  11. Haralick, R.: Statistical and structural approaches to texture. Proceedings of the IEEE 67(5), 786–804 (1979)

    Article  Google Scholar 

  12. Sellaouti, A., Hamouda, A., Deruyver, A., Wemmert, C.: Hierarchical classification-based region growing (HCBRG): a collaborative approach for object segmentation and classification. In: Campilho, A., Kamel, M. (eds.) ICIAR 2012, Part I. LNCS, vol. 7324, pp. 51–60. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Kurtz, C., Passat, N., Ganarski, P., Puissant, A.: Extraction of complex patterns from multiresolution remote sensing images: A hierarchical top-down methodology. Pattern Recognition 45(2), 685–706 (2012)

    Article  Google Scholar 

  14. Wolpert, D.H.: Stacked generalization. Neural Networks 5(2), 241–259 (1992)

    Article  MathSciNet  Google Scholar 

  15. Fan, D., Chan, P., Stolfo, S.: A comparative evaluation of combiner and stacked generalization. In: Proceedings of AAAI 1996 Workshop on Integrating Multiple Learned Models, pp. 40–46 (1996)

    Google Scholar 

  16. Seewald, A.: Towards Understanding Stacking: Studies of a General Ensemble Learning Scheme. The Vienna University of Technology (2003)

    Google Scholar 

  17. Skalak, D.: Prototype Selection for Composite Nearest Neighbor Classifiers. PhD thesis (1997)

    Google Scholar 

  18. Alpaydin, E.: Introduction to Machine Learning, 2nd edn. The MIT Press (2010)

    Google Scholar 

  19. Perlich, C., Swirszcz, G.: On cross-validation and stacking: building seemingly predictive models on random data. SIGKDD Explorations 12, 11–15 (2010)

    Article  Google Scholar 

  20. Brazdil, P., Soares, C., Costa, J.D.: Ranking learning algorithms: Using ibl and meta-learning on accuracy and time results. Machine Learning 50(3), 251–277 (2003)

    Article  MATH  Google Scholar 

  21. Ting, K., Witten, I.: Issues in stacked generalization. Journal of Artificial Intelligence Research 10, 271–289 (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasmina Jaâfra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Sellaouti, A., Jaâfra, Y., Hamouda, A. (2014). Meta-learning for Adaptive Image Segmentation. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2014. Lecture Notes in Computer Science(), vol 8814. Springer, Cham. https://doi.org/10.1007/978-3-319-11758-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11758-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11757-7

  • Online ISBN: 978-3-319-11758-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics