An Offline Optimal SPARQL Query Planning Approach to Evaluate Online Heuristic Planners | SpringerLink
Skip to main content

An Offline Optimal SPARQL Query Planning Approach to Evaluate Online Heuristic Planners

  • Conference paper
Web Information Systems Engineering – WISE 2014 (WISE 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8786))

Included in the following conference series:

  • 1606 Accesses

Abstract

In graph databases, a given graph query can be executed in a large variety of semantically equivalent ways. Each such execution plan produces the same results, but at different computation costs. The query planning problem consists of finding, for a given query, an execution plan with the minimum cost. The traditional greedy or heuristic cost-based approaches addressing the query planning problem do not guarantee by design the optimality of the chosen execution plan. In this paper, we present a principled framework to solve the query planning problem by casting it into an Integer Linear Programming problem, and discuss its applications to testing and improving heuristic-based query planners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bornea, M., Dolby, J., Fokoue, A., Kementsietsidis, A., Srinivas, K.: An offline optimal sparql query planning approach, http://researcher.watson.ibm.com/researcher/files/us-achille/techreport.pdf

  2. Bornea, M., Dolby, J., Kementsietsidis, A., Srinivas, K., Dantressangle, P., Udrea, O., Bishwaranjan, B.: Building an efficient rdf store over a relational database. In: Proceedings of the ACM SIGMOD Conference, SIGMOD 2013 (2013)

    Google Scholar 

  3. Chaudhuri, S.: An overview of query optimization in relational systems. In: SIGACT-SIGMOD-SIGART, pp. 34–43 (1998)

    Google Scholar 

  4. Graefe, G.: The cascades framework for query optimization. Data Engineering Bulletin 18 (1995)

    Google Scholar 

  5. Graefe, G., DeWitt, D.J.: The exodus optimizer generator. SIGMOD Record, 160–172 (1987)

    Google Scholar 

  6. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems. Journal of Web Semantics 3(2-3), 158–182 (2005)

    Article  Google Scholar 

  7. Haas, L.M., Freytag, J.C., Lohman, G.M., Pirahesh, H.: Extensible query processing in starburst. SIGMOD Record, 377–388 (1989)

    Google Scholar 

  8. Hartig, O., Heese, R.: The SPARQL query graph model for query optimization. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 564–578. Springer, Heidelberg (2007)

    Google Scholar 

  9. Ibaraki, T., Kameda, T.: On the optimal nesting order for computing n-relational joins. ACM Trans. Database Syst. 9(3), 482–502 (1984), http://doi.acm.org/10.1145/1270.1498

  10. Ioannidis, Y.E.: Query optimization. In: The Computer Science and Engineering Handbook, pp. 1038–1057 (1997)

    Google Scholar 

  11. Jarke, M., Koch, J.: Query optimization in database systems. ACM Comput. Surv., 111–152 (1984)

    Google Scholar 

  12. Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., Liu, S.: Towards a complete owl ontology benchmark. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 125–139. Springer, Heidelberg (2006), http://dx.doi.org/10.1007/11762256_12

    Google Scholar 

  13. Maduko, A., Anyanwu, K., Sheth, A., Schliekelman, P.: Estimating the cardinality of rdf graph patterns. In: WWW, pp. 1233–1234 (2007)

    Google Scholar 

  14. Morsey, M., Lehmann, J., Auer, S., Ngonga Ngomo, A.-C.: DBpedia SPARQL Benchmark – Performance Assessment with Real Queries on Real Data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 454–469. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Muralikrishna, M., DeWitt, D.J.: Equi-depth histograms for estimating selectivity factors for multi-dimensional queries. In: SIGMOD, pp. 28–36 (1988)

    Google Scholar 

  16. Neumann, T., Weikum, G.: The RDF-3X engine for scalable management of RDF data. The VLDB Journal 19(1), 91–113 (2010)

    Article  Google Scholar 

  17. Poosala, V., Ioannidis, Y.E., Haas, P.J., Shekita, E.J.: Improved histograms for selectivity estimation of range predicates. In: SIGMOD, pp. 294–305 (1996)

    Google Scholar 

  18. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: A SPARQL Performance Benchmark. CoRR abs/0806.4627 (2008)

    Google Scholar 

  19. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.: Access path selection in a relational database management system. In: SIGMOD (1979)

    Google Scholar 

  20. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL basic graph pattern optimization using selectivity estimation. In: WWW (2008)

    Google Scholar 

  21. Tsialiamanis, P., Sidirourgos, L., Fundulaki, I., Christophides, V., Boncz, P.: Heuristics-based query optimisation for SPARQL. In: EDBT, pp. 324–335 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Fokoue, A., Bornea, M., Dolby, J., Kementsietsidis, A., Srinivas, K. (2014). An Offline Optimal SPARQL Query Planning Approach to Evaluate Online Heuristic Planners. In: Benatallah, B., Bestavros, A., Manolopoulos, Y., Vakali, A., Zhang, Y. (eds) Web Information Systems Engineering – WISE 2014. WISE 2014. Lecture Notes in Computer Science, vol 8786. Springer, Cham. https://doi.org/10.1007/978-3-319-11749-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11749-2_36

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11748-5

  • Online ISBN: 978-3-319-11749-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics