Benchmarking News Recommendations in a Living Lab | SpringerLink
Skip to main content

Abstract

Most user-centric studies of information access systems in literature suffer from unrealistic settings or limited numbers of users who participate in the study. In order to address this issue, the idea of a living lab has been promoted. Living labs allow us to evaluate research hypotheses using a large number of users who satisfy their information need in a real context. In this paper, we introduce a living lab on news recommendation in real time. The living lab has first been organized as News Recommendation Challenge at ACM RecSys’13 and then as campaign-style evaluation lab NEWSREEL at CLEF’14. Within this lab, researchers were asked to provide news article recommendations to millions of users in real time. Different from user studies which have been performed in a laboratory, these users are following their own agenda. Consequently, laboratory bias on their behavior can be neglected. We outline the living lab scenario and the experimental setup of the two benchmarking events. We argue that the living lab can serve as reference point for the implementation of living labs for the evaluation of information access systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adomavicius, G., Kwon, Y.O.: Improving aggregate recommendation diversity using ranking-based techniques. Knowledge and Data Engineering 24(5), 896–911 (2012)

    Article  Google Scholar 

  2. Allan, J.: Hard track overview in trec 2003: High accuracy retrieval from documents. In: TREC, pp. 24–37 (2003)

    Google Scholar 

  3. Amatriain, X.: Mining large streams of user data for personalized recommendations. ACM SIGKDD Explorations Newsletter 14(2), 37 (2013)

    Article  Google Scholar 

  4. Azzopardi, L., Balog, K.: Towards a living lab for information retrieval research and development. In: Forner, P., Gonzalo, J., Kekäläinen, J., Lalmas, M., de Rijke, M. (eds.) CLEF 2011. LNCS, vol. 6941, pp. 26–37. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Balog, K., Elsweiler, D., Kanoulas, E., Kelly, L., Smucker, M.: Report on the cikm workshop on living labs for information retrieval evaluation. SIGIR Forum 48(1) (2014)

    Google Scholar 

  6. Belkin, N.J.: Some(what) grand challenges for information retrieval. In: ECIR, p. 1 (2008)

    Google Scholar 

  7. Bennett, J., Lanning, S.: The netflix prize. In: KDDCup (2007)

    Google Scholar 

  8. Brodt, T., Hopfgartner, F.: Shedding Light on a Living Lab: The CLEF NEWSREEL Open Recommendation Platform. In: Proceedings of the Information Interaction in Context Conference, IIiX 2014. Springer (to appear, 2014)

    Google Scholar 

  9. Cleverdon, C., Mills, J., Keen, M.: Factors determining the performance of indexing systems. Technical report, ASLIB Cranfield project, Cranfield (1966)

    Google Scholar 

  10. Clough, P., Sanderson, M.: Evaluating the performance of information retrieval systems using test collections. Information Research 18(2) (2013)

    Google Scholar 

  11. Dror, G., Koenigstein, N., Koren, Y., Weimer, M.: The Yahoo! Music Dataset and KDD-Cup. In: JMLR: Workshop and Conference Proceedings, pp. 3–18 (2012)

    Google Scholar 

  12. Dumais, S., Belkin, N.: The trec interactive tracks: Putting the user into search. In: TREC (2005)

    Google Scholar 

  13. Esiyok, C., Kille, B., Jain, B.J., Hopfgartner, F., Albayrak, S.: Users’ reading habits in online news portals. In: IIiX 2014: Proceedings of Information Interaction in Context Conference. ACM (to appear, August 2014)

    Google Scholar 

  14. Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: A constant time collaborative filtering algorithm. Information Retrieval 4(2), 133–151 (2001)

    Article  MATH  Google Scholar 

  15. Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An algorithmic framework for performing collaborative filtering. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 1999, pp. 230–237. ACM (1999)

    Google Scholar 

  16. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems 22(1), 5–53 (2004)

    Article  Google Scholar 

  17. Hopfgartner, F., Jose, J.M.: Semantic user profiling techniques for personalised multimedia recommendation. Multimedia Syst. 16(4-5), 255–274 (2010)

    Article  Google Scholar 

  18. Ivory, M.Y., Hearst, M.A.: The state of the art in automating usability evaluation of user interfaces. ACM Comput. Surv. 33(4), 470–516 (2001)

    Article  Google Scholar 

  19. Kamps, J., Geva, S., Peters, C., Sakai, T., Trotman, A., Voorhees, E.M.: Report on the sigir 2009 workshop on the future of ir evaluation. SIGIR Forum 43(2), 13–23 (2009)

    Article  Google Scholar 

  20. Kelly, D., Dumais, S.T., Pedersen, J.O.: Evaluation challenges and directions for information-seeking support systems. IEEE Computer 42(3), 60–66 (2009)

    Article  Google Scholar 

  21. Kille, B., Hopfgartner, F., Brodt, T., Heintz, T.: The plista dataset. In: NRS 2013: Proceedings of the International Workshop and Challenge on News Recommender Systems, pp. 14–21. ACM (2013)

    Google Scholar 

  22. Konstan, J., Riedl, J.: Recommender systems: from algorithms to user experience. User Modeling and User-Adapted Interaction 22(1-2), 101–123 (2012)

    Article  Google Scholar 

  23. Lommatzsch, A.: Real-time news recommendation using context-aware ensembles. In: de Rijke, M., Kenter, T., de Vries, A.P., Zhai, C., de Jong, F., Radinsky, K., Hofmann, K. (eds.) ECIR 2014. LNCS, vol. 8416, pp. 51–62. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  24. Lommatzsch, A., Plumbaum, T., Albayrak, S.: A linked dataverse knows better: Boosting recommendation quality using semantic knowledge. In: Proc. of the 5th Intl. Conf. on Advances in Semantic Processing, Wilmington, DE, USA, pp. 97–103. IARIA (2011)

    Google Scholar 

  25. Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  26. Phelan, O., McCarthy, K., Smyth, B.: Using twitter to recommend real-time topical news. In: Proceedings of the Third ACM Conference on Recommender Systems, RecSys 2009, pp. 385–388. ACM, New York (2009)

    Google Scholar 

  27. Pirolli, P.: Powers of 10: Modeling complex information-seeking systems at multiple scales. IEEE Computer 42(3), 33–40 (2009)

    Article  Google Scholar 

  28. Said, A., Lin, J., Bellogín, A., de Vries, A.: A month in the life of a production news recommender system. In: Proceedings of the 2013 Workshop on Living Labs for Information Retrieval Evaluation, LivingLab 2013, pp. 7–10. ACM (2013)

    Google Scholar 

  29. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: WWW, pp. 285–295 (2001)

    Google Scholar 

  30. Shani, G., Gunawardana, A.: Evaluating recommendation systems. In: Recommender Systems Handbook, pp. 257–297. Springer (2011)

    Google Scholar 

  31. Tavakolifard, M., Gulla, J.A., Almeroth, K.C., Hopfgartner, F., Kille, B., Plumbaum, T., Lommatzsch, A., Brodt, T., Bucko, A., Heintz, T.: Workshop and challenge on news recommender systems. In: RecSys 2013: Proceedings of the International ACM Conference on Recommender Systems. ACM (October 2013)

    Google Scholar 

  32. TNS Opinion & Social. Special Eurobarometer 386 – Europeans and their Languages. Technical report, European Commission (2012)

    Google Scholar 

  33. Vallet, D., Hopfgartner, F., Jose, J.: Use of implicit graph for recommending relevant videos: a simulated evaluation. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 199–210. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  34. Voorhees, E.M., Harman, D.K.: TREC: Experiment and Evaluation in Information Retrieval, 1st edn. MIT Press, Cambridge (2005)

    Google Scholar 

  35. Ziegler, C.-N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diversification. In: WWW 2005, pp. 22–32. ACM (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hopfgartner, F., Kille, B., Lommatzsch, A., Plumbaum, T., Brodt, T., Heintz, T. (2014). Benchmarking News Recommendations in a Living Lab. In: Kanoulas, E., et al. Information Access Evaluation. Multilinguality, Multimodality, and Interaction. CLEF 2014. Lecture Notes in Computer Science, vol 8685. Springer, Cham. https://doi.org/10.1007/978-3-319-11382-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11382-1_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11381-4

  • Online ISBN: 978-3-319-11382-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics