Continuous Population-Based Incremental Learning with Mixture Probability Modeling for Dynamic Optimization Problems | SpringerLink
Skip to main content

Continuous Population-Based Incremental Learning with Mixture Probability Modeling for Dynamic Optimization Problems

  • Conference paper
Intelligent Data Engineering and Automated Learning – IDEAL 2014 (IDEAL 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8669))

Abstract

This paper proposes a multimodal extension of PBIL C based on Gaussian mixture models for solving dynamic optimization problems. By tracking multiple optima, the algorithm is able to follow the changes in objective functions more efficiently than in the unimodal case. The approach was validated on a set of synthetic benchmarks including Moving Peaks, dynamization of the Rosenbrock function and compositions of functions from the IEEE CEC’2009 competition. The results obtained in the experiments proved the efficiency of the approach in solving dynamic problems with a number of competing peaks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Special session & competition on “Evolutionary computation in dynamic and uncertain environments”, http://www3.ntu.edu.sg/home/epnsugan/index_files/CEC-09-Dynamic-Opt/CEC09-Dyn-Opt.htm (accessed: May 1, 2014)

  2. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization problems. In: Congress on Evolutionary Computation, CEC 1999, pp. 1875–1882. IEEE (1999)

    Google Scholar 

  3. Brest, J., Zamuda, A., Boskovic, B., Maucec, M.S., Zumer, V.: Dynamic optimization using self-adaptive differential evolution. In: IEEE Congress on Evolutionary Computation, pp. 415–422. IEEE (2009)

    Google Scholar 

  4. Chen, S.H., Chen, M.C., Chang, P.C., Zhang, Q., Chen, Y.M.: Guidelines for developing effective estimation of distribution algorithms in solving single machine scheduling problems. Expert Syst. Appl. 37(9), 6441–6451 (2010)

    Article  Google Scholar 

  5. Dong, W., Yao, X.: Unified eigen analysis on multivariate gaussian based estimation of distribution algorithms. Inf. Sci. 178(15), 3000–3023 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, C., Yang, S., Nguyen, T.T., Yu, E.L., Yao, X., Jin, Y., Beyer, H.G., Suganthan, P.N.: Benchmark generator for CEC 2009 competition on dynamic optimization. University of Leicester, University of Birmingham, Nanyang Technological University, Tech. Rep. (2008)

    Google Scholar 

  7. Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: A survey of the state of the art. Swarm and Evolutionary Computation 6, 1–24 (2012)

    Article  Google Scholar 

  8. Pelikan, M., Goldberg, D.E.: Hierarchical problem solving by the bayesian optimization algorithm. In: Proceedings of GECCO 2000, pp. 267–274. Morgan Kaufmann (2000)

    Google Scholar 

  9. Santana, R., Larrañaga, P., Lozano, J.A.: Side chain placement using estimation of distribution algorithms. Artificial Intelligence in Medicine 39(1), 49–63 (2007)

    Article  Google Scholar 

  10. Schaul, T., Glasmachers, T., Schmidhuber, J.: High dimensions and heavy tails for natural evolution strategies. In: GECCO, pp. 845–852. ACM (2011)

    Google Scholar 

  11. Sebag, M., Ducoulombier, A.: Extending population-based incremental learning to continuous search spaces. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 418–427. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  12. Shim, V.A., Tan, K.C., Cheong, C.Y., Chia, J.Y.: Enhancing the scalability of multi-objective optimization via restricted boltzmann machine-based estimation of distribution algorithm. Inf. Sci. 248, 191–213 (2013)

    Article  MathSciNet  Google Scholar 

  13. Yan, W., Xiaoxiong, L.: An improved univariate marginal distribution algorithm for dynamic optimization problem. AASRI Procedia 1, 166–170 (2012), AASRI Conference on Computational Intelligence and Bioinformatics

    Google Scholar 

  14. Yang, S.: Evolutionary computation for dynamic optimization problems. In: GECCO (Companion), pp. 667–682 (2013)

    Google Scholar 

  15. Yang, S., Yao, X.: Experimental study on population-based incremental learning algorithms for dynamic optimization problems. Soft Comput. 9(11), 815–834 (2005)

    Article  MATH  Google Scholar 

  16. Yuan, B.: On the importance of diversity maintenance in estimation of distribution algorithms. In: Proceedings of GECCO 2005, pp. 719–726. ACM Press (2005)

    Google Scholar 

  17. Yuan, B., Orlowska, M.E., Sadiq, S.W.: Extending a class of continuous estimation of distribution algorithms to dynamic problems. Optimization Letters 2(3), 433–443 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhong, X., Li, W.: A decision-tree-based multi-objective estimation of distribution algorithm. In: 2013 Ninth International Conference on Computational Intelligence and Security, pp. 114–11/8 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lancucki, A., Chorowski, J., Michalak, K., Filipiak, P., Lipinski, P. (2014). Continuous Population-Based Incremental Learning with Mixture Probability Modeling for Dynamic Optimization Problems. In: Corchado, E., Lozano, J.A., Quintián, H., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2014. IDEAL 2014. Lecture Notes in Computer Science, vol 8669. Springer, Cham. https://doi.org/10.1007/978-3-319-10840-7_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10840-7_55

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10839-1

  • Online ISBN: 978-3-319-10840-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics