Modeling of Bicomponent Mixing System Used in the Manufacture of Wind Generator Blades | SpringerLink
Skip to main content

Modeling of Bicomponent Mixing System Used in the Manufacture of Wind Generator Blades

  • Conference paper
Intelligent Data Engineering and Automated Learning – IDEAL 2014 (IDEAL 2014)

Abstract

The clean energy use has increased during the last years, especially, electricity generation through wind energy. Wind generator blades are usually made by bicomponent mixing machines. With the aim to predict the behavior of this type of manufacturing systems, it has been developed a model that allows to know the performance of a real bicomponent mixing equipment. The novel approach has been obtained by using clustering combined with regression techniques with a dataset obtained during the system operation. Finally, the created model has been tested with very satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alvarez-Huerta, A., Gonzalez-Miguelez, R., García-Metola, D., Noriega-Gonzalez, A.: Drywell tempeture prediction of a nuclear power plant by means of artificial neural networks. Dyna 86(4), 467–473 (2011)

    Article  Google Scholar 

  2. Bishop, C.: Pattern recognition and machine learning (information science and statistics). Springer-Verlag New York, Inc., Secaucus (2006)

    Google Scholar 

  3. Calvo-Rolle, J., Casteleiro-Roca, J., Quintián, H., Meizoso-Lopez, M.: A hybrid intelligent system for PID controller using in a steel rolling process. Expert Systems with Applications 40(13), 5188–5196 (2013)

    Article  Google Scholar 

  4. Cherif, A., Cardot, H., Boné, R.: SOM time series clustering and prediction with recurrent neural networks. Neurocomput. 74(11), 1936–1944 (2011)

    Article  Google Scholar 

  5. Cristianini, N., Shawe-Taylor, J.: An introduction to support Vector Machines and other kernel-based learning methods. Cambridge University Press, New York (2000)

    Book  Google Scholar 

  6. Fan, H., Wong, C., Yuen, M.F.: Prediction of material properties of epoxy materials using molecular dynamic simulation. In: 7th International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSime 2006, pp. 1–4 (April 2006)

    Google Scholar 

  7. Garg, L., Mcclean, S., Meenan, B., Millard, P.: Phase-type survival trees and mixed distribution survival trees for clustering patients’ hospital length of stay. Informatica 22(1), 57–72 (2011)

    MathSciNet  Google Scholar 

  8. Ghaseminezhad, M.H., Karami, A.: A novel self-organizing map (SOM) neural network for discrete groups of data clustering. Appl. Soft Comput. 11(4), 3771–3778 (2011)

    Article  Google Scholar 

  9. Guo, Y., Li, X., Bai, G., Ma, J.: Time series prediction method based on LS-SVR with modified gaussian RBF. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012, Part II. LNCS, vol. 7664, pp. 9–17. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Jacobs, R., Jordan, M., Nowlan, S., Hinton, G.: Adaptive mixtures of local experts. Neural Comput. 3(1), 79–87 (1991)

    Article  Google Scholar 

  11. Jordan, M., Jacobs, R.: Hierarchical mixtures of experts and the EM algorithm. Neural Comput. 6(2), 181–214 (1994)

    Article  Google Scholar 

  12. Karasuyama, M., Nakano, R.: Optimizing svr hyperparameters via fast cross-validation using aosvr. In: International Joint Conference on Neural Networks, IJCNN 2007, pp. 1186–1191 (August 2007)

    Google Scholar 

  13. Kaski, S., Sinkkonen, J., Klami, A.: Discriminative clustering. Neurocomputing 69(13), 18–41 (2005)

    Article  Google Scholar 

  14. Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78(9), 1464–1480 (1990)

    Article  Google Scholar 

  15. Kohonen, T.: Exploration of very large databases by self-organizing maps. In: International Conference on Neural Networks, vol. 1, pp. PL1–PL6 (1997)

    Google Scholar 

  16. Kohonen, T., Oja, E., Simula, O., Visa, A., Kangas, J.: Engineering applications of the self-organizing map. Proceedings of the IEEE 84(10), 1358–1384 (1996)

    Article  Google Scholar 

  17. Li, H., Chen, Z.: Overview of different wind generator systems and their comparisons. IET Renewable Power Generation 2(2), 123–138 (2008)

    Article  Google Scholar 

  18. Martínez-Rego, D., Fontenla-Romero, O., Alonso-Betanzos, A.: Efficiency of local models ensembles for time series prediction. Expert Syst. Appl. 38(6), 6884–6894 (2011)

    Article  Google Scholar 

  19. Pal, N., Biswas, J.: Cluster validation using graph theoretic concepts. Pattern Recognition 30(6), 847–857 (1997)

    Article  Google Scholar 

  20. Qin, A., Suganthan, P.: Enhanced neural gas network for prototype-based clustering. Pattern Recogn. 38(8), 1275–1288 (2005)

    Article  Google Scholar 

  21. Steinwart, I., Christmann, A.: Support vector machines, 1st edn. Springer Publishing Company, Incorporated (2008)

    Google Scholar 

  22. Suykens, J., Vandewalle, J.: Least squares support vector machine slassifiers. Neural Processing Letters 9(3), 293–300 (1999)

    Article  MathSciNet  Google Scholar 

  23. Šutienė, K., Makackas, D., Pranevičius, H.: Multistage k-means clustering for scenario tree construction. Informatica 21(1), 123–138 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Wang, L., Wu, J.: Neural network ensemble model using PPR and LS-SVR for stock market forecasting. In: Huang, D.-S., Gan, Y., Bevilacqua, V., Figueroa, J.C. (eds.) ICIC 2011. LNCS, vol. 6838, pp. 1–8. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  25. Wang, R., Wang, A.-M., Song, Q.: Research on the alkalinity of sintering process based on LS-SVM algorithms. In: Jin, D., Lin, S. (eds.) Advances in CSIE, Vol. 1. AISC, vol. 168, pp. 449–454. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  26. Wasserman, P.: Advanced methods in neural computing, 1st edn. John Wiley & Sons, Inc., New York (1993)

    MATH  Google Scholar 

  27. Ye, J., Xiong, T.: Svm versus least squares SVM. Journal of Machine Learning Research - Proceedings Track 2, 644–651 (2007)

    Google Scholar 

  28. Young, W.B., Wu, W.H.: Optimization of the skin thickness distribution in the composite wind turbine blade. In: 2011 International Conference on Fluid Power and Mechatronics (FPM), pp. 62–66 (August 2011)

    Google Scholar 

  29. Zeng, Z., Wang, J.: Advances in neural network research and applications, 1st edn. Springer Publishing Company, Incorporated (2010)

    Google Scholar 

  30. Zuo, Y., Liu, H.: Evaluation on comprehensive benefit of wind power generation and utilization of wind energy. In: 2012 IEEE 3rd International Conference on Software Engineering and Service Science (ICSESS), pp. 635–638 (June 2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Jove, E., Aláiz-Moretón, H., Casteleiro-Roca, J.L., Corchado, E., Calvo-Rolle, J.L. (2014). Modeling of Bicomponent Mixing System Used in the Manufacture of Wind Generator Blades. In: Corchado, E., Lozano, J.A., Quintián, H., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2014. IDEAL 2014. Lecture Notes in Computer Science, vol 8669. Springer, Cham. https://doi.org/10.1007/978-3-319-10840-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10840-7_34

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10839-1

  • Online ISBN: 978-3-319-10840-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics