Linear Regression Fisher Discrimination Dictionary Learning for Hyperspectral Image Classification | SpringerLink
Skip to main content

Linear Regression Fisher Discrimination Dictionary Learning for Hyperspectral Image Classification

  • Conference paper
Intelligent Data Engineering and Automated Learning – IDEAL 2014 (IDEAL 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8669))

  • 1722 Accesses

Abstract

In this paper, we propose a novel dictionary learning method for hyperspectral image classification. The proposed method, linear regression Fisher discrimination dictionary learning (LRFDDL), obtains a more discriminative dictionary and a classifier by incorporating linear regression term and the Fisher discrimination into the objective function during training. The linear regression term makes predicted and actual labels as close as possible; while the Fisher discrimination is imposed on the sparse codes so that they have small with-class scatters but large between-class scatters. Experiments show that LRFDDL significantly improves the performances of hyperspectral image classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Melgani, F., Bruzzone, L.: Classification of Hyperspectral Remote Sensing Images with Support Vector Machines. IEEE Transactions on Geoscience Remote Sensing 42(8), 1778–1790 (2004)

    Article  Google Scholar 

  2. Zhong, Y., Zhang, L., Huang, B., Li, P.: An unsupervised artificial immune classifier for multi/hyper-spectral remote sensing image. IEEE Transactions on Geoscience Remote Sensing 44(2), 420–431 (2006)

    Article  Google Scholar 

  3. Yang, L.X., et al.: Semi-Supervised Hyperspectral Image Classification Using Spatio-Spectral Laplacian Support Vector Machine. IEEE Geoscience Remote Sensing Letters 11(3), 651–655 (2014)

    Article  Google Scholar 

  4. Kang, X., Li, S., Benediktsson, J.A.: Spectral–Spatial Hyperspectral Image Classification With Edge-Preserving Filtering. IEEE Transactions on Geoscience Remote Sensing 52(5), 2666–2677 (2014)

    Article  Google Scholar 

  5. Li, W., Prasad, S., Fowler, J.E.: Hyperspectral Image Classification Using Gaussian Mixture Models and Markov Random Field. IEEE Geoscience Remote Sensing Letters 11(1), 153–157 (2014)

    Article  Google Scholar 

  6. Yang, J., Wright, J., Huang, T., Ma, Y.: Image Super resolution as Sparse Representation of Raw Patches. In: IEEE Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  7. Wright, J., Yang, M., Ganesh, A., Sastry, S., Ma, Y.: Robust Face Recognition via Sparse Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(2), 210–227 (2009)

    Article  Google Scholar 

  8. Chen, Y., Nasrabadi, N.M., Tran, T.D.: Hyperspectral Image Classification via Kernel Sparse Representation. IEEE Transactions on Geoscience Remote Sensing 51(1), 217–231 (2013)

    Article  Google Scholar 

  9. Zhang, H., et al.: A Nonlocal Weighted Joint Sparse Representation Classification Method for Hyperspectral Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing pp(99), 1–10 (2013)

    Google Scholar 

  10. Haq, S.U., et al.: A Fast and Robust Sparse Approach for Hyperspectral Data Classification Using a Few Labeled Samples. IEEE Transactions on Geoscience Remote Sensing 50(6), 2287–2302 (2012)

    Article  Google Scholar 

  11. Sun, L., et al.: A Novel Supervised Method for Hyperspectral Image Classification with Spectral-Spatial Constraints. Chinese Journal of Electronics 23(1), 135–141 (2014)

    Google Scholar 

  12. Castrodad, A., et al.: Learning Discriminative Sparse Representations for Modeling, Source Separation, and Mapping of Hyperspectral Imagery. IEEE Transactions on Geoscience and Remote Sensing 49(11), 4263–4281 (2011)

    Article  Google Scholar 

  13. Zhao, Y., et al.: Hyperspectral Imagery Super-resolution by Sparse Representation and Spectral Regularization. EURASIP Journal on Advances in Signal Processing 2011(1), 1–10 (2011)

    Article  Google Scholar 

  14. Zhang, Q., Li, B.: Discriminative K-SVD for Dictionary Learning in Face Recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2691–2698 (2010)

    Google Scholar 

  15. Yang, M., et al.: Fisher Discrimination Dictionary Learning for Sparse Representation. In: IEEE International Conference on Computer Vision, pp. 543–550 (2011)

    Google Scholar 

  16. Jiang, Z., Lin, Z., Davis, L.: Label Consistent K-SVD: Learning a Discriminative Dictionary for Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(11), 2651–2664 (2013)

    Article  Google Scholar 

  17. Liu, H.-D., et al.: Bilinear Discriminative Dictionary Learning for Face Recognition. Pattern Recognition 47(5), 1835–1845 (2014)

    Article  Google Scholar 

  18. Rosasco, L., et al.: Iterative Projection Methods for Structured Sparsity Regularization. MIT Technical Reports

    Google Scholar 

  19. Yang, M., et al.: Metaface Learning for Sparse Representation based Face Recognition. In: IEEE International Conference on Image Processing, pp. 1601–1604 (2010)

    Google Scholar 

  20. Golub, G., Hansen, P., O’leary, D.: Tikhonov regularization and total least squares. SIAM Journal on Matrix Analysis and Applications 21(1), 185–194 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Chen, L., Yang, M., Deng, C., Yin, H. (2014). Linear Regression Fisher Discrimination Dictionary Learning for Hyperspectral Image Classification. In: Corchado, E., Lozano, J.A., Quintián, H., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2014. IDEAL 2014. Lecture Notes in Computer Science, vol 8669. Springer, Cham. https://doi.org/10.1007/978-3-319-10840-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10840-7_31

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10839-1

  • Online ISBN: 978-3-319-10840-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics