Abstract
In a recommendation task it is crucial to have an accurate content-based description of the users and the items. Linked Open Data (LOD) has been demonstrated as one of the best ways of obtaining this kind of content. The main question is to know how useful the LOD information is in inferring user preferences and how to obtain it. We propose a novel approach for Content Modelling and Recommendation based on Formal Concept Analysis (FCA). The approach is based in the modelling of the user and content related information, enriched with LOD, and in a new algorithm to analyze the models and recommend new content. The framework provided by the ESWC 2014 Recommendation Challenge is used for the evaluation. The results are within the average range of other participants, but further work has to be carried out to refine the approach using LOD information.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Eswc 2014, recommendation challenge: http://challenges.2014.eswc-conferences.org/
Balabanovic, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Communications of the ACM 40(3), 66–72 (1997)
Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. International Journal on Semantic Web and Information Systems 5(3), 1–22 (2009)
Damljanovic, D., Stankovic, M., Laublet, P.: Linked data-based concept recommendation: Comparison of different methods in open innovation scenario. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 24–38. Springer, Heidelberg (2012)
Di Noia, T., Mirizzi, R., Ostuni, V.C., Romito, D., Zanker, M.: Linked open data to support content-based recommender systems. In: Proc. of the 8th Int. Conf. on Semantic Systems, pp. 1–8. ACM (2012)
du Boucher-Ryan, P., Bridge, D.: Collaborative recommending using formal concept analysis. Knowledge-Based Systems 19(5), 309–315 (2006)
Ganter, B., Wille, R., Franzke, C.: Formal concept analysis: mathematical foundations. Springer (1997)
Li, X., Murata, T.: A knowledge-based recommendation model utilizing formal concept analysis and association. In: ICCAE, vol. 4, pp. 221–226 (2010)
Ostuni, V.C., Di Noia, T., Di Sciascio, E., Mirizzi, R.: Top-n recommendations from implicit feedback leveraging linked open data. In: Proc. of the 7th ACM Conference on Recommender Systems, RecSys 2013, NY, pp. 85–92 (2013)
Passant, A.: dbrec — music recommendations using DBpedia. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 209–224. Springer, Heidelberg (2010)
Ricci, F., Shapira, B.: Recommender systems handbook. Springer (2011)
Schein, A.I., Popescul, A., Ungar, L.H., Pennock, D.M.: Methods and metrics for cold-start recommendations. In: Proc. of the 25th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, pp. 253–260. ACM, NY (2002)
Senatore, S., Pasi, G.: Lattice navigation for collaborative filtering by means of (fuzzy) formal concept analysis. In: Proc. of the 28th Annual ACM Symposium on Applied Computing, SAC, pp. 920–926. ACM, NY (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Castellanos, A., García-Serrano, A., Cigarrán, J. (2014). Linked Data-based Conceptual Modelling for Recommendation: A FCA-Based Approach. In: Hepp, M., Hoffner, Y. (eds) E-Commerce and Web Technologies. EC-Web 2014. Lecture Notes in Business Information Processing, vol 188. Springer, Cham. https://doi.org/10.1007/978-3-319-10491-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-10491-1_8
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10490-4
Online ISBN: 978-3-319-10491-1
eBook Packages: Computer ScienceComputer Science (R0)