Very Narrow Quantum OBDDs and Width Hierarchies for Classical OBDDs | SpringerLink
Skip to main content

Very Narrow Quantum OBDDs and Width Hierarchies for Classical OBDDs

  • Conference paper
Descriptional Complexity of Formal Systems (DCFS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8614))

Included in the following conference series:

  • 520 Accesses

Abstract

In the paper we investigate a model for computing of Boolean functions – Ordered Binary Decision Diagrams (OBDDs), which is a restricted version of Branching Programs. We present several results on the comparative complexity for several variants of OBDD models.

  • We present some results on the comparative complexity of classical and quantum OBDDs. We consider a partial function depending on a parameter k such that for any k > 0 this function is computed by an exact quantum OBDD of width 2, but any classical OBDD (deterministic or stable bounded-error probabilistic) needs width 2k + 1.

  • We consider quantum and classical nondeterminism. We show that quantum nondeterminism can be more efficient than classical nondeterminism. In particular, an explicit function is presented which is computed by a quantum nondeterministic OBDD with constant width, but any classical nondeterministic OBDD for this function needs non-constant width.

  • We also present new hierarchies on widths of deterministic and nondeterministic OBDDs. We focus both on small and large widths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ablayev, F.: Randomization and nondeterminsm are incomparable for ordered read-once branching programs. Electronic Colloquium on Computational Complexity (ECCC) 4(21) (1997)

    Google Scholar 

  2. Ablayev, F., Gainutdinova, A.: Complexity of quantum uniform and nonuniform automata. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 78–87. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Ablayev, F., Gainutdinova, A., Karpinski, M.: On computational power of quantum branching programs. In: Freivalds, R. (ed.) FCT 2001. LNCS, vol. 2138, pp. 59–70. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Ablayev, F., Gainutdinova, A., Khadiev, K., Yakaryılmaz, A.: Very narrow quantum OBDDs and width hierarchies for classical OBDDs. Technical Report arXiv:1405.7849, arXiv (2014)

    Google Scholar 

  5. Ablayev, F.M., Gainutdinova, A., Karpinski, M., Moore, C., Pollett, C.: On the computational power of probabilistic and quantum branching program. Information Computation 203(2), 145–162 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ablayev, F.M., Karpinski, M.: On the power of randomized branching programs. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 348–356. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  7. Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses and generalizations. In: FOCS, pp. 332–341. IEEE Computer Society (1998), http://arxiv.org/abs/quant-ph/9802062

  8. Ambainis, A., Yakaryılmaz, A.: Superiority of exact quantum automata for promise problems. Information Processing Letters 112(7), 289–291 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bertoni, A., Carpentieri, M.: Analogies and differences between quantum and stochastic automata. Theoretical Computer Science 262(1-2), 69–81 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Geffert, V., Yakaryılmaz, A.: Classical automata on promise problems. In: DCFS 2014. LNCS, vol. 8614, pp. 125–136. Springer, Heidelberg (2014)

    Google Scholar 

  11. Hromkovič, J., Sauerhoff, M.: Tradeoffs between nondeterminism and complexity for communication protocols and branching programs. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 145–156. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Hromkovic, J., Sauerhoff, M.: The power of nondeterminism and randomness for oblivious branching programs. Theory of Computing Systems 36(2), 159–182 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: FOCS, pp. 66–75. IEEE Computer Society (1997)

    Google Scholar 

  14. Nakanishi, M., Hamaguchi, K., Kashiwabara, T.: Ordered quantum branching programs are more powerful than ordered probabilistic branching programs under a bounded-width restriction. In: Du, D.-Z., Eades, P., Sharma, A.K., Lin, X., Estivill-Castro, V. (eds.) COCOON 2000. LNCS, vol. 1858, pp. 467–476. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  15. Paz, A.: Introduction to Probabilistic Automata. Academic Press, New York (1971)

    MATH  Google Scholar 

  16. Rashid, J., Yakaryılmaz, A.: Implications of quantum automata for contextuality. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 318–331. Springer, Heidelberg (2014)

    Google Scholar 

  17. Sauerhoff, M., Sieling, D.: Quantum branching programs and space-bounded nonuniform quantum complexity. Theoretical Computer Science 334(1-3), 177–225 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Watrous, J.: On the complexity of simulating space-bounded quantum computations. Computational Complexity 12(1-2), 48–84 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Watrous, J.: Quantum computational complexity. In: Encyclopedia of Complexity and System Science. Springer arXiv:0804.3401 (2009)

    Google Scholar 

  20. Wegener, I.: Branching Programs and Binary Decision Diagrams. SIAM (2000)

    Google Scholar 

  21. Yakaryılmaz, A., Say, A.C.C.: Languages recognized by nondeterministic quantum finite automata. Quantum Information and Computation 10(9-10), 747–770 (2010)

    MATH  MathSciNet  Google Scholar 

  22. Yakaryılmaz, A., Say, A.C.C.: Unbounded-error quantum computation with small space bounds. Information and Computation 279(6), 873–892 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ablayev, F., Gainutdinova, A., Khadiev, K., Yakaryılmaz, A. (2014). Very Narrow Quantum OBDDs and Width Hierarchies for Classical OBDDs. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds) Descriptional Complexity of Formal Systems. DCFS 2014. Lecture Notes in Computer Science, vol 8614. Springer, Cham. https://doi.org/10.1007/978-3-319-09704-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09704-6_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09703-9

  • Online ISBN: 978-3-319-09704-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics