Dynamic Hand Gesture Recognition Framework | SpringerLink
Skip to main content

Dynamic Hand Gesture Recognition Framework

  • Conference paper
Intelligent Computing Methodologies (ICIC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8589))

Included in the following conference series:

Abstract

Sign languages originated long before any speech-based languages evolved in the world. They contain subtleties that rival any speech-based languages conveying a rich source of information much faster than any speechbased languages. Similar to the diversity of speech-based languages, sign languages vary from region to region. However, unlike the speech counterpart, sign languages from diverse regions from the world have much common traits that originate from human evolution. Researchers have been intrigued by these common traits and have always wondered whether sign language-type communication is possible for instructing the computers opposed to the mundane keyboard and mouse. This trend is popularly known as Human Computer Interaction (HCI) and has used a subset of common sign language hand gestures to interact with machines through computer vision.Since the sign languages comprise of thousands of subtle gestures, a new sophisticated approach has to be initiated for eventual recognition of vast number of gestures. Hand gestures comprise of both static postures and dynamic gestures and can carry significantly rich vocabulary describing words in the thousands. In this article, we present our latest research that describes a mechanism to accurately interpret dynamic hand gestures using a concept known as ‘gesture primitives’ where each dynamic gesture is described as a collection of many primitives over time that can drive a classification strategy based on Hidden Markov Model to reliably predict the gesture using statistical knowledge of such gestures. We believe that even though our work is in its infancy, this strategy can be extended to thousands of dynamic gestures used in sign language to be interpreted by machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Premaratne, P., Nguyen, Q.: Consumer Electronics Control System Based on Hand Gesture moment invariants. IET Computer Vision 1-1, 35–41 (2007)

    Google Scholar 

  2. Premaratne, P.: Human Computer Interaction using Hand Gestures, Springer Publication (2014), http://www.amazon.com/Computer-Interaction-Gestures-Cognitive-Technology/dp/9814585688 , ISBN-10: 9814585688

  3. Hutcheon, S.: Last Hurrah for Lost Remote, Sydney Morning Herald (July 18, 2007) http://www.smh.com.au/articles/2007/07/18/1184559833067.html

  4. International Reporter (July16, 2007) http://www.internationalreporter.com/News-2402/Now,-seven-simple-hand-gestures-to-switch-your-TV-on.html

  5. Premaratne, P., Yang, S., Zou, Z., Vial, P.: Australian Sign Language Recognition Using Moment Invariants. In: Huang, D.-S., Jo, K.-H., Zhou, Y.-Q., Han, K. (eds.) ICIC 2013. LNCS (LNAI), vol. 7996, pp. 509–514. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Premaratne, P., Ajaz, S., Premaratne, M.: Hand Gesture Tracking and Recognition System for Control of Consumer Electronics. In: Huang, D.-S., Gan, Y., Gupta, P., Gromiha, M.M. (eds.) ICIC 2011. LNCS (LNAI), vol. 6839, pp. 588–593. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Premaratne, P., Nguyen, Q., Premaratne, M.: Human computer interaction using hand Gestures. In: Advanced Intelligent Computing-Theories and Applications – Communications in Computer nd Information Science, vol. 93, pp. 381–386 (2010)

    Google Scholar 

  8. Premaratne, P., Safaei, F., Nguyen, Q.: Moment Invariant Based Control System Using Hand Gestures. In: Intelligent Computing in Signal Processing and Pattern Recognition, vol. 345, pp. 322–333. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Premaratne, P., Premaratne, M.: Image Matching using Moment Invariants. Neurocomputing 137, 65–70 (2014)

    Article  Google Scholar 

  10. Premaratne, P., Ajaz, S., Premaratne, M.: ‘Hand Gesture Tracking and Recognition System Using Lucas-Kanade Algorithm for Control of Consumer Electronics. For Neurocomputing Journal 116(20), 242–249 (2013)

    Article  Google Scholar 

  11. Premaratne, P., Nguyen, Q.: Consumer Electronics Control System Based on Hand Gesture Moment Invariants. IET Computer Vision 1-1, 35–41 (2007)

    Google Scholar 

  12. Yang, S., Premaratne, P., Vial, P.: Hand Gesture Recognition: An Overview. In: 5th IEEE International Conference on Broadband Network and Multimedia Technology (2013)

    Google Scholar 

  13. Kawai, H., Tamura, S.: Recognition of Sign Language Motion Images. Pattern Recognition 21(4), 343–353 (1988)

    Article  Google Scholar 

  14. Kawai, H., Tamura, S.: Deaf-And-Mute Sign Language Generation System. In: Proc. Medical Images and Icons SPIE 0515 (1984)

    Google Scholar 

  15. Kawai, H., Tamura, S.: Deaf-and-Mute Sign Language Generation System. Pattern Recognition 18(3/4), 199–205 (1985)

    Article  Google Scholar 

  16. Cootes, T.F., Taylor, C.J.: Active shape models- ‘Smart Snakes’. In: Proceedings of the British Machine Vision Conference, pp. 266–275 (1992)

    Google Scholar 

  17. Heap, T., Samaria, F.: Real-time Hand Tracking and Gesture Recognition Using Smart Snakes. In: Proceedings of Interface to Real and Virtual Worlds, pp. 1–13 (1995)

    Google Scholar 

  18. Starner, T., Pentland, A.: Real-Time American Sign Language Recognition From Video Using Hidden Markov Models, Technical Report 375. MIT Media Lab (1995)

    Google Scholar 

  19. Assan, M., Grobel, K.: Video-based Sign Language Recognition Using Hidden Markov models. In: Wachsmuth, I., Fröhlich, M. (eds.) GW 1997. LNCS (LNAI), vol. 1371, pp. 97–109. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  20. Assan, M., Grobel, K.: Isolated Sign Language Recognition using Hidden Markov Models. In: IEEE International Conference on Computational Cybernetics and Simulation, pp. 162–167 (1997)

    Google Scholar 

  21. Vogler, C., Metaxas, D.: Handshapes and movements: Multiple-channel american sign language recognition. In: Camurri, A., Volpe, G. (eds.) GW 2003. LNCS (LNAI), vol. 2915, pp. 247–258. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  22. Vogler, C., Metaxas, D.: ASL Recognition based on a Coupling between HMMs and 3D Motion Analysis. Technical Reports (CIS). Department of Computer and Information Science, University of Pennsylvania (1998)

    Google Scholar 

  23. Imagawa, K., Matsuo, H., Taniguchi, R., Arita, D.: Recognition of Local Features for Camera-based Sign Language Recognition System. In: Proceedings of 15th International Conference on Pattern Recognition, pp. 849–853 (2000)

    Google Scholar 

  24. Isaacs, J., Foo, S.: Hand pose estimation for American sign Language Recognition. In: Proceedings of the Thirty-Sixth Southeastern Symposium on System Theory, pp. 132–136 (2004)

    Google Scholar 

  25. Cooper, H., Ong, E., Pugeau, N., Bowden, R.: Sign Language Recognition Using Sub-Units. Journal of Machine Learning Research 13, 2205–2231 (2012)

    MATH  Google Scholar 

  26. Premaratne, P., Ajaz, S., Premaratne, M.: Hand Gesture Tracking and Recognition System Using Lucas-Kanade Algorithm for Control of Consumer Electronics. Neurocomputing Journal 116(20), 242–249 (2013)

    Article  Google Scholar 

  27. Fang, G., Gao, W., Zhao, D.: Large Vocabulary Sign Language Recognition Based on Hierarchical decision trees. In: Proceedings of the 5th International Conference on Multimodal Interfaces, pp. 125–131 (2003)

    Google Scholar 

  28. Triesch, J., von der Malsburg, C.: Self-organized Integration of Adaptive Visual Cues for Face Tracking. In: Proc. of the 4th IEEE Int’l Conf. on Automatic Face and Gesture Recognition (2000)

    Google Scholar 

  29. Blake, A., Isard, M.: The Application of Techniques from Graphics, Vision, Control Theory and statistics to visual tracking of shapes in Motion. Springer (1998)

    Google Scholar 

  30. Oz, C., Leu, M.C.: American Sign Language word Recognition with a Sensory Glove Using Artificial neural networks. Engineering Applications of Artificial Intelligence 24(7), 1204–1213 (2011)

    Article  Google Scholar 

  31. Pan, Z., Li, Y., Zhang, M., Sun, C., Guo, K., Tang, X., Zhou, S.: A real-time Multi-cue Hand tracking algorithm based on computer vision. IEEE Virtual Reality, 219–222 (2000)

    Google Scholar 

  32. Premaratne, P., Nguyen, Q., Premaratne, M.: Human Computer Interaction Using Hand Gestures. In: Huang, D.-S., McGinnity, M., Heutte, L., Zhang, X.-P. (eds.) ICIC 2010. CCIS, vol. 93, pp. 381–386. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  33. Zhongliang, Q., Wenjun, W.: Automatic Ship Classification by Superstructure Moment Invariants and Two-stage Classifier. In: ICCS/ISITA 1992 Communications on the Move, pp. 544–547 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Premaratne, P., Yang, S., Zhou, Z., Bandara, N. (2014). Dynamic Hand Gesture Recognition Framework. In: Huang, DS., Jo, KH., Wang, L. (eds) Intelligent Computing Methodologies. ICIC 2014. Lecture Notes in Computer Science(), vol 8589. Springer, Cham. https://doi.org/10.1007/978-3-319-09339-0_84

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09339-0_84

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09338-3

  • Online ISBN: 978-3-319-09339-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics