Abstract
Proximity Distribution Kernel is an effective method for bag-of-featues based image representation. In this paper, we investigate the soft assignment of visual words to image features for proximity distribution. Visual word contribution function is proposed to model ambiguous proximity distributions. Three ambiguous proximity distributions is developed by three ambiguous contribution functions. The experiments are conducted on both classification and retrieval of medical image data sets. The results show that the performance of the proposed methods, Proximity Distribution Kernel (PDK), is better or comparable to the state-of-the-art bag-of-features based image representation methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Penatti, O., Silva, F., Valle, E., Gouet-Brunet, V., Torres, R.: Visual word spatial arrangement for image retrieval and classification. Pattern Recognition 47(2), 705–720 (2014)
Chen, J., Feng, B., Xu, B.: Spatial similarity measure of visual phrases for image retrieval. In: Gurrin, C., Hopfgartner, F., Hurst, W., Johansen, H., Lee, H., O’Connor, N. (eds.) MMM 2014, Part II. LNCS, vol. 8326, pp. 275–282. Springer, Heidelberg (2014)
Furuya, T., Ohbuchi, R.: Visual saliency weighting and cross-domain manifold ranking for sketch-based image retrieval. In: Gurrin, C., Hopfgartner, F., Hurst, W., Johansen, H., Lee, H., O’Connor, N. (eds.) MMM 2014, Part I. LNCS, vol. 8325, pp. 37–49. Springer, Heidelberg (2014)
Sun, Q., Hu, F., Hao, Q.: Mobile target scenario recognition via low-cost pyroelectric sensing system: Toward a context-enhanced accurate identification. IEEE Transactions on Systems, Man, and Cybernetics: Systems 44(3), 375–384 (2014)
Sun, Q., Hu, F., Hao, Q.: Context awareness emergence for distributed binary pyroelectric sensors. In: 2010 IEEE Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 162–167. IEEE (2010)
Wang, Y., Jiang, W., Agrawal, G.: Scimate: A novel mapreduce-like framework for multiple scientific data formats. In: 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 443–450. IEEE (2012)
Wang, Y., Su, Y., Agrawal, G.: Supporting a light-weight data management layer over hdf5. In: 2013 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 335–342. IEEE (2013)
Su, Y., Wang, Y., Agrawal, G., Kettimuthu, R.: Sdquery dsi: integrating data management support with a wide area data transfer protocol. In: Proceedings of SC13: International Conference for High Performance Computing, Networking, Storage and Analysis, vol. 47. ACM (2013)
Xu, L., Zhan, Z., Xu, S., Ye, K.: Cross-layer detection of malicious websites. In: CODASPY, pp. 141–152 (2013)
Cui, S., Soh, Y.C.: Linearity indices and linearity improvement of 2-d tetralateral position-sensitive detector. IEEE Transactions on Electron Devices 57(9), 2310–2316 (2010)
Xia, Y., Wan, S., Yue, L.: A new texture direction feature descriptor and its application in contentbased image retrieval. In: Proceedings of the 3rd International Conference on Multimedia Technology, ICMT 2013. LNEE, vol. 278, pp. 143–151 (2014)
Xia, Y., Wan, S., Yue, L.: Local spatial binary pattern: A new feature descriptor for content-based image retrieval. In: Proceedings of SPIE - The International Society for Optical Engineering, vol. 9069 (2014)
Guimaräes Pedronette, D., Almeida, J., Da, S., Torres, R.: A scalable re-ranking method for contentbased image retrieval. Information Sciences 265, 91–104 (2014)
Xie, B., Mu, Y., Song, M., Tao, D.: Random projection tree and multiview embedding for large-scale image retrieval. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds.) ICONIP 2010, Part II. LNCS, vol. 6444, pp. 641–649. Springer, Heidelberg (2010)
Qian, J., Yang, J., Zhang, N., Yang, Z.: Histogram of visual words based on locally adaptive regression kernels descriptors for image feature extraction. Neurocomputing 129, 516–527 (2014)
Zhang, C., Liu, R., Qiu, T., Su, Z.: Robust visual tracking via incremental low-rank features learning. Neurocomputing 131, 237–247 (2014)
Wu, F., Pai, H.T., Yan, Y.F., Chuang, J.: Clustering results of image searches by annotations and visual features. Telematics and Informatics 31(3), 477–491 (2014)
Zhou, Y., Li, L., Zhao, T., Zhang, H.: Region-based high-level semantics extraction with cedd. In: 2010 2nd IEEE International Conference on Network Infrastructure and Digital Content, pp. 404–408. IEEE (2010)
Zhou, Y., Li, L., Zhang, H.: Adaptive learning of region-based plsa model for total scene annotation. arXiv preprint arXiv:1311.5590 (2013)
Li, X., Gao, J., Li, H., Yang, L., Srihari, R.K.: A multimodal framework for unsupervised feature fusion. In: Proceedings of the 22nd ACM International Conference on Information & Knowledge Management, pp. 897–902. ACM (2013)
Kong, X., Schunn, C.D.: Global vs. local information processing in visual/spatial problem solving: The case of traveling salesman problem. Cognitive Systems Research 8(3), 192–207 (2007)
Kong, X., Schunn, C.D., Wallstrom, G.L.: High regularities in eye-movement patterns reveal the dynamics of the visual working memory allocation mechanism. Cognitive Science 34(2), 322–337 (2010)
Yang, J., Wang, Y., Wang, H.: K., H., Wang, W., J., S.: Automatic objects removal for scene completion. In: The 33rd Annual IEEE International Conference on Computer Communications (INFOCOM 2014), Workshop on Security and Privacy in Big Data (2014)
Cho, W., Seo, S., Na, I., Kang, S.: Automatic images classification using HDP-GMM and local image features. In: Jeong, Y.-S., Park, Y.-H., Hsu, C.-H(R.), Park, J.J(J.H.) (eds.) Ubiquitous Information Technologies and Applications. LNEE, vol. 280, pp. 323–333. Springer, Heidelberg (2014)
Javed, U., Riaz, M., Ghafoor, A., Ali, S., Cheema, T.: Mri and pet image fusion using fuzzy logic and image local features. The Scientific World Journal 2014 (2014)
Yang, F., Xu, Y.Y., Wang, S.T., Shen, H.B.: Image-based classification of protein subcellular location patterns in human reproductive tissue by ensemble learning global and local features. Neurocomputing 131, 113–123 (2014)
Sun, Q., Wu, P., Wu, Y., Guo, M., Lu, J.: Unsupervised multi-level non-negative matrix factorization model: Binary data case. Journal of Information Security 3(4) (2012)
Mu, Y., Ding, W., Tao, D., Stepinski, T.F.: Biologically inspired model for crater detection. In: The 2011 International Joint Conference on Neural Networks (IJCNN), pp. 2487–2494. IEEE (2011)
Pinto, P., Tome, A., Santos, V.: Visual detection of vehicles using a bag-of-features approach. In: Proceedings of the 2013 13th International Conference on Autonomous Robot Systems, ROBOTICA 2013 (2013)
Kranthi Kiran, M., ShyamVamsi, T.: Hand gesture detection and recognition using affine- shift, bag-of-features and extreme learning machine techniques. In: Satapathy, S.C., Udgata, S.K., Biswal, B.N. (eds.) FICTA 2013. AISC, vol. 247, pp. 181–187. Springer, Heidelberg (2014)
Yu, J., Jeon, M., Pedrycz, W.: Weighted feature trajectories and concatenated bag-of-features for action recognition. Neurocomputing 131, 200–207 (2014)
Zagoris, K., Pratikakis, I., Antonacopoulos, A., Gatos, B., Papamarkos, N.: Distinction between handwritten and machine-printed text based on the bag of visual words model. Pattern Recognition 47(3), 1051–1062 (2014)
Fabian, J., Pires, R., Rocha, A.: Visual words dictionaries and fusion techniques for searching people through textual and visual attributes. Pattern Recognition Letters 39(1), 74–84 (2014)
van Gemert, Jan C. Veenman, C.J.S.A.W.G.J.M.: Visual word ambiguity. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(7), 1271–1283 (2010)
Fiel, S., Sablatnig, R.: Writer identification and writer retrieval using the fisher vector on visual vocabularies. In: Proceedings of the International Conference on Document Analysis and Recognition, ICDAR, pp. 545–549 (2013)
Bolovinou, A., Kotsiourou, C., Amditis, A.: Dynamic road scene classification: Combining motion with a visual vocabulary model. In: Proceedings of the 16th International Conference on Information Fusion, FUSION 2013, pp. 1151–1158 (2013)
Wang, L., Elyan, E., Song, D.: Rebuilding visual vocabulary via spatial-temporal context similarity for video retrieval. In: Gurrin, C., Hopfgartner, F., Hurst, W., Johansen, H., Lee, H., O’Connor, N. (eds.) MMM 2014, Part I. LNCS, vol. 8325, pp. 74–85. Springer, Heidelberg (2014)
Sun, Q., Ma, R., Hao, Q., Hu, F.: Space encoding based human activity modeling and situation perception. In: 2013 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), pp. 183–186. IEEE (2013)
Sun, Q., Hu, F., Hao, Q.: Human activity modeling and situation perception based on fiber-optic sensing system. IEEE Transactions on Human Machine Systems (2014)
Sun, T., Ding, S., Xu, X.: No-reference image quality assessment through sift intensity. Applied Mathematics and Information Sciences 8(4), 1925–1934 (2014)
Meng, X., Yin, Y., Yang, G., Xi, X.: Retinal identification based on an improved circular gabor filter and scale invariant feature transform. Sensors 13(7), 9248–9266 (2013)
Travieso, C., Del Pozo-Banos, M., Alonso, J.: Fused intra-bimodal face verification approach based on scale-invariant feature transform and a vocabulary tree. Pattern Recognition Letters 36(1), 254–260 (2014)
Li, Y., Liu, W., Li, X., Huang, Q., Li, X.: Ga-sift: A new scale invariant feature transform for multispectral image using geometric algebra. Information Sciences (2014)
Makar, M., Chang, C.L., Chen, D., Tsai, S., Girod, B.: Compression of image patches for local feature extraction. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2009, pp. 821–824 (2009)
Shih, H.C., Chuang, C.Y., Huang, C.L., Lin, C.H.: Gender classification using bayesian classifier with local binary patch features. In: Proceedings of IEEE 4th International Conference on Nonlinear Science and Complexity, NSC 2012, pp. 45–50 (2012)
Zhang, Q., Zhang, L., Yang, Y., Tian, Y., Weng, L.: Local patch discriminative metric learning for hyperspectral image feature extraction. IEEE Geoscience and Remote Sensing Letters (2013)
Chen, G., Sun, R., Ren, Z., Wang, Z., Sun, L.: Local shape patch based feature matching method. Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology) 44(suppl.2), 33–39 (2013)
Chandler, D., Field, D.: Estimates of the information content and dimensionality of natural scenes from proximity distributions. Journal of the Optical Society of America A: Optics and Image Science, and Vision 24(4), 922–941 (2007)
Ling, H., Soatto, S.: Proximity distribution kernels for geometric context in category recognition (2007)
Deselaers, T., Keysers, D.N.H.: Features for image retrieval: an experimental comparison. Information Retrieval 11(2), 77–107 (2008)
Ay, M., Kisi, O.: Modelling of chemical oxygen demand by using anns, anfis and k-means clustering techniques. Journal of Hydrology 511, 279–289 (2014)
Wang, L., Pan, C.: Robust level set image segmentation via a local correntropy-based k-means clustering. Pattern Recognition 47(5), 1917–1925 (2014)
Lin, C.H., Chen, C.C., Lee, H.L., Liao, J.R.: Fast k-means algorithm based on a level histogram for image retrieval. Expert Systems with Applications 41(7), 3276–3283 (2014)
Ling, H.B., Soatto, S.: Proximity distribution kernels for geometric context in category recognition. In: 2007 IEEE 11th International Conference on Computer Vision, vol. 1-6, pp. 245–252 (2007)
Varma, M., Zisserman, A.: A statistical approach to material classification using image patch exemplars. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(11), 2032–2047 (2009)
Deselaers, T., et al.: Overview of the imageCLEF 2007 object retrieval task. In: Peters, C., Jijkoun, V., Mandl, T., Müller, H., Oard, D.W., Peñas, A., Petras, V., Santos, D. (eds.) CLEF 2007. LNCS, vol. 5152, pp. 445–471. Springer, Heidelberg (2008)
Li, M., Li, Y., Huang, X., Zhao, G., Tian, W.: Evaluating growth models of pseudomonas spp. in seasoned prepared chicken stored at different temperatures by the principal component analysis (pca). Food Microbiology 40, 41–47 (2014)
Lu, Y., Gao, B., Chen, P., Charles, D., Yu, L.: Characterisation of organic and conventional sweet basil leaves using chromatographic and flow-injection mass spectrometric (fims) fingerprints combined with principal component analysis. Food Chemistry 154, 262–268 (2014)
Niu, Y., Wang, X.: On the k-nearest neighbor classifier with locally structural consistency. In: Liu, X., Ye, Y. (eds.) Proceedings of the 9th International Symposium on Linear Drives for Industry Applications, Volume 2. LNEE, vol. 271, pp. 269–277. Springer, Heidelberg (2014)
Souza, R., Rittner, L., Lotufo, R.: A comparison between k-optimum path forest and k-nearest neighbors supervised classifiers. Pattern Recognition Letters 39(1), 2–10 (2014)
Li, C.L., Wang, E., Huang, G.J., Chen, A.: Top-n query processing in spatial databases considering bi-chromatic reverse k-nearest neighbors. Information Systems 42, 123–138 (2014)
Müller, H., Kalpathy-Cramer, J., Kahn Jr., C.E., Hatt, W., Bedrick, S., Hersh, W.: Overview of the imageCLEFmed 2008 medical image retrieval task. In: Peters, C., Deselaers, T., Ferro, N., Gonzalo, J., Jones, G.J.F., Kurimo, M., Mandl, T., Peñas, A., Petras, V. (eds.) CLEF 2008. LNCS, vol. 5706, pp. 512–522. Springer, Heidelberg (2009)
Shen, J., Su, P.-C., Cheung, S.-C., Zhao, J.: Virtual Mirror Rendering with Stationary RGB-D Cameras and Stored 3D Background. IEEE Transactions on Image Processing 22(9), 1–16 (2013)
Shen, J., Cheung, S.C.S.: Layer Depth Denoising and Completion for Structured-Light RGB-D Cameras. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2013, pp. 1187–1194. IEEE (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Wang, Q., Li, Y. (2014). Ambiguous Proximity Distribution. In: Huang, DS., Jo, KH., Wang, L. (eds) Intelligent Computing Methodologies. ICIC 2014. Lecture Notes in Computer Science(), vol 8589. Springer, Cham. https://doi.org/10.1007/978-3-319-09339-0_42
Download citation
DOI: https://doi.org/10.1007/978-3-319-09339-0_42
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09338-3
Online ISBN: 978-3-319-09339-0
eBook Packages: Computer ScienceComputer Science (R0)