Abstract
Today’s SAT solvers have an enormous importance and impact in many practical settings. They are used as efficient back-end to solve many NP-complete problems. However, many computational problems are located at the second level of the Polynomial Hierarchy or even higher, and hence polynomial-time transformations to SAT are not possible, unless the hierarchy collapses. In certain cases one can break through these complexity barriers by fixed-parameter tractable (fpt) reductions which exploit structural aspects of problem instances in terms of problem parameters. Recent research established a general theoretical framework that supports the classification of parameterized problems on whether they admit such an fpt-reduction to SAT or not. We use this framework to analyze some problems that are related to Boolean satisfiability. We consider several natural parameterizations of these problems, and we identify for which of these an fpt-reduction to SAT is possible. The problems that we look at are related to minimizing an implicant of a DNF formula, minimizing a DNF formula, and satisfiability of quantified Boolean formulas.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Atserias, A., Oliva, S.: Bounded-width QBF is PSPACE-complete. In: Portier, N., Wilke, T. (eds.) 30th International Symposium on Theoretical Aspects of Computer Science, STACS 2013, Kiel, Germany, February 27 - March 2. LIPIcs, vol. 20, pp. 44–54. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)
Ayari, A., Basin, D.: Qubos: Deciding quantified Boolean logic using propositional satisfiability solvers. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517, pp. 187–201. Springer, Heidelberg (2002)
Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extraction. AI Commun. 25(2), 97–116 (2012)
Benedetti, M., Bernardini, S.: Incremental compilation-to-SAT procedures. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 46–58. Springer, Heidelberg (2005)
Biere, A.: Resolve and expand. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)
Biere, A.: Bounded model checking. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 457–481. IOS Press (2009)
Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS/ETAPS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)
Bodlaender, H.L.: Dynamic programming on graphs with bounded treewidth. In: Lepistö, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317, pp. 105–118. Springer, Heidelberg (1988)
Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science 209(1-2), 1–45 (1998)
Bodlaender, H.L.: Fixed-parameter tractability of treewidth and pathwidth. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift 2012. LNCS, vol. 7370, pp. 196–227. Springer, Heidelberg (2012)
Chang, R., Kadin, J.: The Boolean Hierarchy and the Polynomial Hierarchy: A closer connection. SIAM J. Comput. 25(2), 340–354 (1996)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999)
Dvořák, W., Järvisalo, M., Wallner, J.P., Woltran, S.: Complexity-sensitive decision procedures for abstract argumentation. Artificial Intelligence 206(0), 53–78 (2014)
Fichte, J.K., Szeider, S.: Backdoors to normality for disjunctive logic programs. In: Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2013, pp. 320–327. AAAI Press (2013)
Flum, J., Grohe, M.: Describing parameterized complexity classes. Information and Computation 187(2), 291–319 (2003)
Flum, J., Grohe, M.: Parameterized Complexity Theory, Texts in Theoretical Computer Science. An EATCS Series, vol. XIV. Springer, Berlin (2006)
Garey, M.R., Johnson, D.R.: Computers and Intractability. W. H. Freeman and Company, New York (1979)
Goldsmith, J., Hagen, M., Mundhenk, M.: Complexity of DNF minimization and isomorphism testing for monotone formulas. Information and Computation 206(6), 760–775 (2008)
Gomes, C.P., Kautz, H., Sabharwal, A., Selman, B.: Satisfiability solvers. In: Handbook of Knowledge Representation. Foundations of Artificial Intelligence, vol. 3, pp. 89–134. Elsevier (2008)
Gottlob, G., Fermüller, C.G.: Removing redundancy from a clause. Artificial Intelligence 61(2), 263–289 (1993)
Gottlob, G., Pichler, R., Wei, F.: Bounded treewidth as a key to tractability of knowledge representation and reasoning. Artificial Intelligence 174(1), 105–132 (2010)
Grégoire, E., Mazure, B., Piette, C.: On approaches to explaining infeasibility of sets of Boolean clauses. In: 20th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2008), Daytion, Ohio, USA, November 3-5 , pp. 74–83. IEEE Computer Society (2008)
de Haan, R., Szeider, S.: The parameterized complexity of reasoning problems beyond NP. In: Baral, C., De Giacomo, G., Eiter, T. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Fourteenth International Conference, Vienna, Austria, July 20-24. AAAI Press (2014)
Hartmanis, J.: New developments in structural complexity theory. Theoretical Computer Science 71(1), 79–93 (1990)
Hooker, J.N.: Solving the incremental satisfiability problem. J. Logic Programming 15(1&2), 177–186 (1993)
Kloks, T.: Treewidth: Computations and Approximations. Springer, Berlin (1994)
Kolaitis, P.G., Vardi, M.Y.: Conjunctive-query containment and constraint satisfaction. J. of Computer and System Sciences 61(2), 302–332 (2000), special issue on the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (Seattle, WA, 1998)
Krajicek, J.: Bounded arithmetic, propositional logic and complexity theory. Cambridge University Press (1995)
Krentel, M.W.: The complexity of optimization problems. J. of Computer and System Sciences 36(3), 490–509 (1988)
Malik, S., Zhang, L.: Boolean satisfiability from theoretical hardness to practical success. Communications of the ACM 52(8), 76–82 (2009)
Marques-Silva, J., Janota, M., Belov, A.: Minimal sets over monotone predicates in Boolean formulae. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 592–607. Springer, Heidelberg (2013)
Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2006)
Pan, G., Vardi, M.Y.: Fixed-parameter hierarchies inside PSPACE. In: Proceedings of 21th IEEE Symposium on Logic in Computer Science (LICS 2006), Seattle, WA, USA, August 12-15, pp. 27–36. IEEE Computer Society (2006)
Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
Pfandler, A., Rümmele, S., Szeider, S.: Backdoors to abduction. In: Rossi, F. (ed.) Proceedings of the 23rd International Joint Conference on Artificial Intelligence, IJCAI 2013. AAAI Press/IJCAI (2013)
Prestwich, S.D.: CNF encodings. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, pp. 75–97. IOS Press (2009)
Sakallah, K.A., Marques-Silva, J.: Anatomy and empirical evaluation of modern SAT solvers. Bulletin of the European Association for Theoretical Computer Science 103, 96–121 (2011)
Samer, M., Szeider, S.: Constraint satisfaction with bounded treewidth revisited. J. of Computer and System Sciences 76(2), 103–114 (2010)
Stockmeyer, L.J.: The polynomial-time hierarchy. Theoretical Computer Science 3(1), 1–22 (1976)
Umans, C.: Approximability and Completeness in the Polynomial Hierarchy. Ph.D. thesis. University of California, Berkeley (2000)
Wagner, K.W.: Bounded query classes. SIAM J. Comput. 19(5), 833–846 (1990)
Whittemore, J., Kim, J., Sakallah, K.A.: SATIRE: A new incremental satisfiability engine. In: Proceedings of the 38th Design Automation Conference, DAC 2001, Las Vegas, NV, USA, June 18-22, pp. 542–545. ACM (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
de Haan, R., Szeider, S. (2014). Fixed-Parameter Tractable Reductions to SAT. In: Sinz, C., Egly, U. (eds) Theory and Applications of Satisfiability Testing – SAT 2014. SAT 2014. Lecture Notes in Computer Science, vol 8561. Springer, Cham. https://doi.org/10.1007/978-3-319-09284-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-09284-3_8
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09283-6
Online ISBN: 978-3-319-09284-3
eBook Packages: Computer ScienceComputer Science (R0)