Solving MaxSAT and #SAT on Structured CNF Formulas | SpringerLink
Skip to main content

Solving MaxSAT and #SAT on Structured CNF Formulas

  • Conference paper
Theory and Applications of Satisfiability Testing – SAT 2014 (SAT 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8561))

  • 1407 Accesses

Abstract

In this paper we propose a structural parameter of CNF formulas and use it to identify instances of weighted MaxSAT and #SAT that can be solved in polynomial time. Given a CNF formula we say that a set of clauses is projection satisfiable if there is some complete assignment satisfying these clauses only. Let the ps-value of the formula be the number of projection satisfiable sets of clauses. Applying the notion of branch decompositions to CNF formulas and using ps-value as cut function, we define the ps-width of a formula. For a formula given with a decomposition of polynomial ps-width we show dynamic programming algorithms solving weighted MaxSAT and #SAT in polynomial time. Combining with results of ’Belmonte and Vatshelle, Graph classes with structured neighborhoods and algorithmic applications, Theor. Comput. Sci. 511: 54-65 (2013)’ we get polynomial-time algorithms solving weighted MaxSAT and #SAT for some classes of structured CNF formulas. For example, we get \({\mathcal O}(m^2(m + n)s)\) algorithms for formulas F of m clauses and n variables and total size s, if F has a linear ordering of the variables and clauses such that for any variable x occurring in clause C, if x appears before C then any variable between them also occurs in C, and if C appears before x then x occurs also in any clause between them. Note that the class of incidence graphs of such formulas do not have bounded clique-width.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bacchus, F., Dalmao, S., Pitassi, T.: Algorithms and complexity results for# sat and bayesian inference. In: Proceedings of 44th Annual IEEE Symposium on Foundations of Computer Science, pp. 340–351. IEEE (2003)

    Google Scholar 

  2. Belmonte, R., Vatshelle, M.: Graph classes with structured neighborhoods and algorithmic applications. Theor. Comput. Sci. 511, 54–65 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey, Monographs on Discrete Mathematics and Applications, vol. 3. SIAM Society for Industrial and Applied Mathematics, Philadelphia (1999)

    Book  Google Scholar 

  4. Brandstädt, A., Lozin, V.V.: On the linear structure and clique-width of bipartite permutation graphs. Ars. Comb. 67 (2003)

    Google Scholar 

  5. Bui-Xuan, B.M., Telle, J.A., Vatshelle, M.: H-join decomposable graphs and algorithms with runtime single exponential in rankwidth. Discrete Applied Mathematics 158(7), 809–819 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bui-Xuan, B.M., Telle, J.A., Vatshelle, M.: Boolean-width of graphs. Theoretical Computer Science 412(39), 5187–5204 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Courcelle, B.: Clique-width of countable graphs: a compactness property. Discrete Mathematics 276(1-3), 127–148 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Darwiche, A.: Recursive conditioning. Artificial Intelligence 126(1), 5–41 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fischer, E., Makowsky, J.A., Ravve, E.V.: Counting truth assignments of formulas of bounded tree-width or clique-width. Discrete Applied Mathematics 156(4), 511–529 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ganian, R., Hlinený, P., Obdrzálek, J.: Better algorithms for satisfiability problems for formulas of bounded rank-width. Fundam. Inform. 123(1), 59–76 (2013)

    MATH  Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman (1979)

    Google Scholar 

  12. Geelen, J.F., Gerards, B., Whittle, G.: Branch-width and well-quasi-ordering in matroids and graphs. J. Combin. Theory Ser. B 84(2), 270–290 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hell, P., Huang, J.: Interval bigraphs and circular arc graphs. Journal of Graph Theory 46(4), 313–327 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hvidevold, E.M., Sharmin, S., Telle, J.A., Vatshelle, M.: Finding good decompositions for dynamic programming on dense graphs. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 219–231. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Jaumard, B., Simeone, B.: On the complexity of the maximum satisfiability problem for horn formulas. Inf. Process. Lett. 26(1), 1–4 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kaski, P., Koivisto, M., Nederlof, J.: Homomorphic hashing for sparse coefficient extraction. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 147–158. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Müller, H.: Recognizing interval digraphs and interval bigraphs in polynomial time. Discrete Applied Mathematics 78(1-3), 189–205 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Paulusma, D., Slivovsky, F., Szeider, S.: Model counting for CNF formulas of bounded modular treewidth. In: Portier, N., Wilke, T. (eds.) STACS. LIPIcs, vol. 20, pp. 55–66. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)

    Google Scholar 

  19. Rafiey, A.: Recognizing interval bigraphs by forbidden patterns. CoRR abs/1211.2662 (2012)

    Google Scholar 

  20. Raman, V., Ravikumar, B., Rao, S.S.: A simplified NP-complete MAXSAT problem. Inf. Process. Lett. 65(1), 1–6 (1998)

    Article  MathSciNet  Google Scholar 

  21. Robertson, N., Seymour, P.D.: Graph minors X. obstructions to tree-decomposition. J. Combin. Theory Ser. B 52(2), 153–190 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  22. Roth, D.: A connectionist framework for reasoning: Reasoning with examples. In: Clancey, W.J., Weld, D.S. (eds.) AAAI/IAAI, vol. 2, pp. 1256–1261. AAAI Press / The MIT Press (1996)

    Google Scholar 

  23. Samer, M., Szeider, S.: Algorithms for propositional model counting. J. Discrete Algorithms 8(1), 50–64 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Slivovsky, F., Szeider, S.: Model counting for formulas of bounded clique-width. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC2013. LNCS, vol. 8283, pp. 677–687. Springer, Heidelberg (2013)

    Google Scholar 

  25. Szeider, S.: On fixed-parameter tractable parameterizations of SAT. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 188–202. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  26. Vatshelle, M.: New width parameters of graphs. Ph.D. thesis. The University of Bergen (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Sæther, S.H., Telle, J.A., Vatshelle, M. (2014). Solving MaxSAT and #SAT on Structured CNF Formulas. In: Sinz, C., Egly, U. (eds) Theory and Applications of Satisfiability Testing – SAT 2014. SAT 2014. Lecture Notes in Computer Science, vol 8561. Springer, Cham. https://doi.org/10.1007/978-3-319-09284-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09284-3_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09283-6

  • Online ISBN: 978-3-319-09284-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics