Abstract
In this paper we propose a structural parameter of CNF formulas and use it to identify instances of weighted MaxSAT and #SAT that can be solved in polynomial time. Given a CNF formula we say that a set of clauses is projection satisfiable if there is some complete assignment satisfying these clauses only. Let the ps-value of the formula be the number of projection satisfiable sets of clauses. Applying the notion of branch decompositions to CNF formulas and using ps-value as cut function, we define the ps-width of a formula. For a formula given with a decomposition of polynomial ps-width we show dynamic programming algorithms solving weighted MaxSAT and #SAT in polynomial time. Combining with results of ’Belmonte and Vatshelle, Graph classes with structured neighborhoods and algorithmic applications, Theor. Comput. Sci. 511: 54-65 (2013)’ we get polynomial-time algorithms solving weighted MaxSAT and #SAT for some classes of structured CNF formulas. For example, we get \({\mathcal O}(m^2(m + n)s)\) algorithms for formulas F of m clauses and n variables and total size s, if F has a linear ordering of the variables and clauses such that for any variable x occurring in clause C, if x appears before C then any variable between them also occurs in C, and if C appears before x then x occurs also in any clause between them. Note that the class of incidence graphs of such formulas do not have bounded clique-width.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bacchus, F., Dalmao, S., Pitassi, T.: Algorithms and complexity results for# sat and bayesian inference. In: Proceedings of 44th Annual IEEE Symposium on Foundations of Computer Science, pp. 340–351. IEEE (2003)
Belmonte, R., Vatshelle, M.: Graph classes with structured neighborhoods and algorithmic applications. Theor. Comput. Sci. 511, 54–65 (2013)
Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey, Monographs on Discrete Mathematics and Applications, vol. 3. SIAM Society for Industrial and Applied Mathematics, Philadelphia (1999)
Brandstädt, A., Lozin, V.V.: On the linear structure and clique-width of bipartite permutation graphs. Ars. Comb. 67 (2003)
Bui-Xuan, B.M., Telle, J.A., Vatshelle, M.: H-join decomposable graphs and algorithms with runtime single exponential in rankwidth. Discrete Applied Mathematics 158(7), 809–819 (2010)
Bui-Xuan, B.M., Telle, J.A., Vatshelle, M.: Boolean-width of graphs. Theoretical Computer Science 412(39), 5187–5204 (2011)
Courcelle, B.: Clique-width of countable graphs: a compactness property. Discrete Mathematics 276(1-3), 127–148 (2004)
Darwiche, A.: Recursive conditioning. Artificial Intelligence 126(1), 5–41 (2001)
Fischer, E., Makowsky, J.A., Ravve, E.V.: Counting truth assignments of formulas of bounded tree-width or clique-width. Discrete Applied Mathematics 156(4), 511–529 (2008)
Ganian, R., Hlinený, P., Obdrzálek, J.: Better algorithms for satisfiability problems for formulas of bounded rank-width. Fundam. Inform. 123(1), 59–76 (2013)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman (1979)
Geelen, J.F., Gerards, B., Whittle, G.: Branch-width and well-quasi-ordering in matroids and graphs. J. Combin. Theory Ser. B 84(2), 270–290 (2002)
Hell, P., Huang, J.: Interval bigraphs and circular arc graphs. Journal of Graph Theory 46(4), 313–327 (2004)
Hvidevold, E.M., Sharmin, S., Telle, J.A., Vatshelle, M.: Finding good decompositions for dynamic programming on dense graphs. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 219–231. Springer, Heidelberg (2012)
Jaumard, B., Simeone, B.: On the complexity of the maximum satisfiability problem for horn formulas. Inf. Process. Lett. 26(1), 1–4 (1987)
Kaski, P., Koivisto, M., Nederlof, J.: Homomorphic hashing for sparse coefficient extraction. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 147–158. Springer, Heidelberg (2012)
Müller, H.: Recognizing interval digraphs and interval bigraphs in polynomial time. Discrete Applied Mathematics 78(1-3), 189–205 (1997)
Paulusma, D., Slivovsky, F., Szeider, S.: Model counting for CNF formulas of bounded modular treewidth. In: Portier, N., Wilke, T. (eds.) STACS. LIPIcs, vol. 20, pp. 55–66. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)
Rafiey, A.: Recognizing interval bigraphs by forbidden patterns. CoRR abs/1211.2662 (2012)
Raman, V., Ravikumar, B., Rao, S.S.: A simplified NP-complete MAXSAT problem. Inf. Process. Lett. 65(1), 1–6 (1998)
Robertson, N., Seymour, P.D.: Graph minors X. obstructions to tree-decomposition. J. Combin. Theory Ser. B 52(2), 153–190 (1991)
Roth, D.: A connectionist framework for reasoning: Reasoning with examples. In: Clancey, W.J., Weld, D.S. (eds.) AAAI/IAAI, vol. 2, pp. 1256–1261. AAAI Press / The MIT Press (1996)
Samer, M., Szeider, S.: Algorithms for propositional model counting. J. Discrete Algorithms 8(1), 50–64 (2010)
Slivovsky, F., Szeider, S.: Model counting for formulas of bounded clique-width. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC2013. LNCS, vol. 8283, pp. 677–687. Springer, Heidelberg (2013)
Szeider, S.: On fixed-parameter tractable parameterizations of SAT. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 188–202. Springer, Heidelberg (2004)
Vatshelle, M.: New width parameters of graphs. Ph.D. thesis. The University of Bergen (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Sæther, S.H., Telle, J.A., Vatshelle, M. (2014). Solving MaxSAT and #SAT on Structured CNF Formulas. In: Sinz, C., Egly, U. (eds) Theory and Applications of Satisfiability Testing – SAT 2014. SAT 2014. Lecture Notes in Computer Science, vol 8561. Springer, Cham. https://doi.org/10.1007/978-3-319-09284-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-09284-3_3
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09283-6
Online ISBN: 978-3-319-09284-3
eBook Packages: Computer ScienceComputer Science (R0)