Spatio-temporal Analysis of Earth’s Surface Deformation by GPS and InSAR Data | SpringerLink
Skip to main content

Spatio-temporal Analysis of Earth’s Surface Deformation by GPS and InSAR Data

  • Conference paper
Computational Science and Its Applications – ICCSA 2014 (ICCSA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8579))

Included in the following conference series:

Abstract

We present elements of technology for spatio-temporal data mining aimed at studying natural processes by temporal sequences. The methods considered are applied to the analysis of Earth’s surface deformations by GPS and InSAR measurements of ground displacements. Often, the study of earth deformation is limited to the analysis of average strain rates only. It is shown that inclusion of the temporal component of GPS data allows one to find the relationship between seismicity and dynamics of the fields of horizontal surface deformations. Accounting for the temporal component of InSAR data allows identifying urban areas of land, which differ not only in the intensity of deformations process, but also in the type of their dynamics. The methods considered are realized in GIS GeoTime 3 (http://www.geo.iitp.ru/GT3/).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Manso Callejo, M., Moldonado Ibanez, A., Hernandez Rey, R., Ballari, D., Moya Honduvilla, J.: GEOSISMO: Visualization of events and seismologic characteristics in the internet. Internet-Based Cartographic Teaching and Learning: Atlases, Map Use and Visual Analytics. Madrid Spain International Cartographic Association/Association Cartographique Internationale (2005)

    Google Scholar 

  2. Derendyaev, A., Gitis, V., Metrikov, P.: Detection of Earthquake Precursors in GIS GeoTime. In: 13th AGILE International Conference on Geographic Information Science, Guimaraes, Portugal (2010), http://plone.itc.nl/agile_old/Conference/2010-guimaraes/PosterAbstracts_PDF%5C116_DOC.pdf

  3. Andrienko, N., Andrienko, G.: Exploratory analysis of spatial and temporal data. Springer, Berlin (2006)

    MATH  Google Scholar 

  4. Pultar, E., Cova, T.J., Yuan, M., Goodchild, M.F.: EDGIS: a dynamic GIS based on space time points. International Journal of Geographical Information Science 24(3), 329–346 (2010)

    Article  Google Scholar 

  5. Gitis, V.G., Ermakov, B.V.: Fundamentals of spatio-temporal forecasting in geoinformatics, Moscow, Fizmatgis. p. 256 (2004) (In Russian)

    Google Scholar 

  6. Metrikov, P., Derendyaev, A., Gitis, V.: Web-GIS technology for dynamic data analysis. In: Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Querying and Mining Uncertain Spatio-Temporal Data, pp. 29–36. ACM (November 2011)

    Google Scholar 

  7. Ge, L., Chang, H.C., Janssen, V., Rizos, C.: Integration of GPS, radar interferometry and GIS for ground deformation monitoring. In: Proc. 2003 Int. Symp. on GPS/GNSS, Toyko, Japan, November 15-18, pp. 465–472 (2003)

    Google Scholar 

  8. Webster, T.L., Dias, G.: An automated GIS procedure for comparing GPS and proximal LiDAR elevations. Computers & Geosciences 32(6), 713–726 (2006)

    Article  Google Scholar 

  9. Gitis, V.G., Derendyaev, A.B.: Geoinformation technology for spatio-temporal processes research. In: Proc. ISPRS Workshop on Dynamic and Multi-Dimensional GIS, Shanghai, China, pp. 111–115 (October 2011)

    Google Scholar 

  10. Gitis, V.G., Osher, B.V., Pirogov, S.A., Ponomarev, A.V., Sobolev, G.A., Jurkov, E.F.: A System for Analysis of Geological Catastrophe Precursors. Journal of Earthquake Prediction Research 3, 540–555 (1994)

    Google Scholar 

  11. Sobolev, G.A., Zakrzhevskaya, N.A., Akatova, K.N., Gitis, V.G., Derendyaev, A.B., Bragin, V.D., Sycheva, N.A., Kuzikov, S.I.: Dynamics of Interaction between Fields of Seismicity and Surface Deformations (Bishkek Geodynamic Test Area). Izvestiya Physics of the Solid Earth 46(10), 817–838 (2010)

    Article  Google Scholar 

  12. Sobolev, G.A., Tyupkin, Y.S.: New method of intermediate-term earthquake prediction. European Seismological Commission XXV General Assembly Seismology in Europe, Reykjavik, Iceland, pp. 229–234 (1996)

    Google Scholar 

  13. Lanari, R., Zeni, G., Manunta, M., Guarino, S., Berardino, P., Sansosti, E.: An integrated SAR/GIS approach for investigating urban deformation phenomena: a case study of the city of Naples, Italy. International Journal of Remote Sensing 25(14), 2855–2867 (2004)

    Article  Google Scholar 

  14. Yerro, A., Corominas, J., Mallorquí, J.J., Monells, D.: Analysis of the evolution of ground movements in a low densely urban area by means of DInSAR technique. Engineering Geology (2013)

    Google Scholar 

  15. Anderssohn, J., Motagh, M., Walter, T.R., Rosenau, M., Kaufmann, H., Oncken, O.: Surface deformation time series and source modeling for a volcanic complex system based on satellite wide swath and image mode interferometry: The Lazufre system, central Andes. Remote Sensing of Environment 113(10), 2062–2075 (2009)

    Article  Google Scholar 

  16. Van Westen, C.J., Van Asch, T.W., Soeters, R.: Landslide hazard and risk zonation—why is it still so difficult? Bulletin of Engineering Geology and the Environment 65(2), 167–184 (2006)

    Article  Google Scholar 

  17. Likhachev, B.: Clustering method of spatio-temporal sequences of satellite SAR interferometry. In: 2011 (ITaS 2011): 34 Conference of Young Scientists and Specialists of IITP RAS, pp. 151–155 (2011) (in Russian), http://itas2011.iitp.ru/pdf/1569460147.pdf

  18. Dmitriev, P.N., Golubev, V.I., Isaev, Y.S., Kiseleva, E.A., Mikhailov, V.O., Smolianinova, E.I.: Some problems of InSAR data processing and interpretation for the monitoring of landslide process. Modern Problems of Remote Sensing of the Earth from Space 9(2), 130–144 (2012)

    Google Scholar 

  19. Kadlečík, P., Schenk, V., Seidlova, Z., Schenková, Z.: Analysis of vertical movements detected by radar interferometry in urban areas. Acta Geodyn. Geomater. 7(3(159)), 371–380 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Gitis, V., Derendyaev, A. (2014). Spatio-temporal Analysis of Earth’s Surface Deformation by GPS and InSAR Data. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2014. ICCSA 2014. Lecture Notes in Computer Science, vol 8579. Springer, Cham. https://doi.org/10.1007/978-3-319-09144-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09144-0_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09143-3

  • Online ISBN: 978-3-319-09144-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics