Abstract
Reducing the distance between informal and formal proofs in interactive theorem proving is a long-standing matter. An approach to this general topic is to increase automation in theorem provers: indeed, automation turns many small formal steps into one big step. In spite of the usual automation methods, there are still many situations where the user has to provide some information manually, whereas this information could be derived from the context. In this paper, we characterize some very common use cases where such situations happen, and identify some general patterns behind them. We then provide solutions to deal with these situations automatically, which we implemented as HOL Light and HOL4 tactics. We find these tactics to be extremely useful in practice, both for their automation and for the feedback they provide to the user.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aravantinos, V.: Implicational Conversions for HOL Light and HOL4 (2013), https://github.com/aravantv/impconv , https://github.com/aravantv/impconv/HOL4-impconv (respectively)
Asperti, A., Tassi, E.: Smart Matching. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.) AISC/Calculemus/MKM 2010. LNCS (LNAI), vol. 6167, pp. 263–277. Springer, Heidelberg (2010)
Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press (1999)
Bachmair, L., Ganzinger, H.: Rewrite-Based Equational Theorem Proving with Selection and Simplification. Journal of Logical Computation 4(3), 217–247 (1994)
Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability Modulo Theories. In: Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 825–885. IOS Press (2009)
Braibant, T., Pous, D.: Tactics for Reasoning Modulo AC in Coq. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 167–182. Springer, Heidelberg (2011)
Brünnler, K., Tiu, A.F.: A Local System for Classical Logic. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 347–361. Springer, Heidelberg (2001)
Cooper, D.C.: Theorem Proving in Arithmetic Without Multiplication. Machine Intelligence 7, 91–99 (1972)
Brand, D., Darringer, J., Joyner, W.: Completeness of Conditional Reductions. Research Report RC-7404, IBM (1978)
Davis, M., Logemann, G., Loveland, D.W.: A Machine Program for Theorem-Proving. Communications of the ACM 5(7), 394–397 (1962)
Dowek, G., Hardin, T., Kirchner, C.: Theorem Proving Modulo. Journal of Automated Reasoning 31(1), 33–72 (2003)
Fitting, M.: First-Order Logic and Automated Theorem Proving. Texts and Monographs in Computer Science. Springer (1990)
Gonthier, G., Tassi, E.: A Language of Patterns for Subterm Selection. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 361–376. Springer, Heidelberg (2012)
Harrison, J.: The HOL Light System Reference (2013), http://www.cl.cam.ac.uk/~jrh13/hol-light/reference.html
Homeier, P.V.: HOL4 source code (2002), http://ww.src/1/dep_rewrite.sml
Huet, G.P.: A Mechanization of Type Theory. In: International Joint Conference on Artificial Intelligence, pp. 139–146. William Kaufmann (1973)
Inverardi, P.: Rewriting for preorder relations. In: Lindenstrauss, N., Dershowitz, N. (eds.) CTRS 1994. LNCS, vol. 968, pp. 223–234. Springer, Heidelberg (1995)
Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View. Texts in Theoretical Computer Science. An EATCS Series. Springer (2008)
Liu, L., Hasan, O., Aravantinos, V., Tahar, S.: Formal Reasoning about Classified Markov Chains in HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 295–310. Springer, Heidelberg (2013)
Mahmoud, M.Y., Aravantinos, V., Tahar, S.: Formalization of Infinite Dimension Linear Spaces with Application to Quantum Theory. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 413–427. Springer, Heidelberg (2013)
Mayr, R., Nipkow, T.: Higher-Order Rewrite Systems and Their Confluence. Theoretical Computer Science 192(1), 3–29 (1998)
Norrish, M.: Rewriting Conversions Implemented with Continuations. Journal of Automated Reasoning 43(3), 305–336 (2009)
Paulson, L.C.: A Higher-Order Implementation of Rewriting. Science of Computer Programming 3(2), 119–149 (1983)
Paulson, L.C., Blanchette, J.C.: Three Years of Experience with Sledgehammer, a Practical Link Between Automatic and Interactive Theorem Provers. In: IWIL@LPAR. EPiC Series, vol. 2, pp. 1–11 (2010)
Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning. Elsevier and MIT Press (2001)
Robinson, P.J., Staples, J.: Formalizing a Hierarchical Structure of Practical Mathematical Reasoning. Journal of Logical Computation 3(1), 47–61 (1993)
Siddique, U., Aravantinos, V., Tahar, S.: Formal Stability Analysis of Optical Resonators. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 368–382. Springer, Heidelberg (2013)
Slind, K.: AC Unification in HOL90. In: Joyce, J.J., Seger, C.-J.H. (eds.) HUG 1993. LNCS, vol. 780, pp. 436–449. Springer, Heidelberg (1994)
Slind, K., Norrish, M.: A Brief Overview of HOL4. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg (2008)
Solovyev, A.: SSReflect/HOL Light manual. Flyspeck project (2012)
Tankink, C., Geuvers, H., McKinna, J., Wiedijk, F.: Proviola: A Tool for Proof Re-animation. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.) AISC/Calculemus/MKM 2010. LNCS (LNAI), vol. 6167, pp. 440–454. Springer, Heidelberg (2010)
Türk, T.: HOL4 source code (2006)
Türk, T.: HOL4 source code (2008), http://src/1/ConseqConv.sml
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Aravantinos, V., Tahar, S. (2014). Implicational Rewriting Tactics in HOL. In: Klein, G., Gamboa, R. (eds) Interactive Theorem Proving. ITP 2014. Lecture Notes in Computer Science, vol 8558. Springer, Cham. https://doi.org/10.1007/978-3-319-08970-6_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-08970-6_4
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08969-0
Online ISBN: 978-3-319-08970-6
eBook Packages: Computer ScienceComputer Science (R0)