Statistical Techniques for Validation of Simulation and Analytic Stochastic Models | SpringerLink
Skip to main content

Statistical Techniques for Validation of Simulation and Analytic Stochastic Models

  • Conference paper
Analytical and Stochastic Modeling Techniques and Applications (ASMTA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8499))

  • 792 Accesses

Abstract

In this paper, we consider the problem of statistical validation of multivariate stationary response simulation and analytic stochastic models of observed systems (say, transportation or service systems), which have p response variables. The problem is reduced to testing the equality of the mean vectors for two multivariate normal populations. Without assuming equality of the covariance matrices, it is referred to as the Behrens–Fisher problem. The main purpose of this paper is to bring to the attention of applied researchers the satisfactory tests that can be used for testing the equality of two normal mean vectors when the population covariance matrices are unknown and arbitrary. To illustrate the proposed statistical techniques, application examples are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5491
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 6864
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balci, O., Sargent, R.G.: A Bibliography on the Credibility, Assessment and Validation of Simulation and Mathematical Models. Simuletter 15, 15–27 (1984)

    Google Scholar 

  2. Birta, L., Ozmizrak, F.: A Knowledge-Based Approach for the Validation of Simulation Models: The Foundation. ACM Trans. Model. Comput. Simulation 6(1996), 76–98 (1996)

    Article  Google Scholar 

  3. Findler, N.V., Mazur, N.M.: A System for Automatic Model Verification and Validation. Transactions of the Society for Computer Simulation 6, 153–172 (1990)

    Google Scholar 

  4. Landry, M., Oral, M.: In Search of a Valid View of Model Validation for Operations Research. European Journal of Operational Research 66, 161–167 (1993)

    Article  Google Scholar 

  5. Mayer, D.G., Butler, D.: Statistical Validation. Ecol. Model. 68, 21–32 (1993)

    Article  Google Scholar 

  6. Nechval, K.N., Nechval, N.A., Vasermanis, E.K.: Technique for Identifying an Observable Process with one of Several Simulation Models. In: Proceedings of the Summer Computer Simulation Conference (SCSC 2003), Montreal, Canada, pp. 70–75 (2003)

    Google Scholar 

  7. Vasermanis, E.K., Nechval, K.N., Nechval, N.A.: Statistical Validation of Simulation Models of Observable Systems. Kybernetes (The International Journal of Systems & Cybernetics) 32, 858–869 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Freese, F.: Testing Accuracy. Forest Sci. 6, 139–145 (1960)

    Google Scholar 

  9. Ottosson, F., Håkanson, L.: Presentation and Analysis of a Model Simulating the pH Response of Lake Liming. Ecol. Modelling 104, 89–111 (1997)

    Article  Google Scholar 

  10. Jans-Hammermeister, D.C., McGill, W.B.: Evaluation of Three Simulation Models Used to Describe Plant Residue Decomposition in Soil. Ecol. Modelling 104, 1–13 (1997)

    Article  Google Scholar 

  11. Landsberg, J.J., Waring, R.H., Coops, N.C.: Performance of the Forest Productivity Model 3-PG Applied to a Wide Range of Forest Types. Forest Ecol. Manage. 172, 199–214 (2003)

    Article  Google Scholar 

  12. Bartelink, H.H.: Radiation Interception by Forest Trees: A Simulation Study on Effects of Stand Density and Foliage Clustering on Absorption and Transmission. Ecol. Modelling 105, 213–225 (1998)

    Article  Google Scholar 

  13. Alewell, C., Manderscheid, B.: Use of Objective Criteria for the Assessment of Biogeochemical Ecosystem Models. Ecol. Modelling 105, 113–124 (1998)

    Google Scholar 

  14. Nechval, N.A., Nechval, K.N.: Characterization Theorems for Selecting the Type of Underlying Distribution. In: Abstracts of Communications of the 7th Vilnius Conference on Probability Theory and Mathematical Statistics & the 22nd European Meeting of Statisticians, pp. 352–353. TEV, Vilnius (1998)

    Google Scholar 

  15. Nechval, N.A., Nechval, K.N., Vasermanis, E.K.: Technique of Testing for Two-Phase Regressions. In: Proceedings of the Second International Conference on Simulation, Gaming, Training and Business Process Reengineering in Operations, pp. 129–133. RTU, Riga (2000)

    Google Scholar 

  16. Nechval, N.A.: A General Method for Constructing Automated Procedures for Testing Quickest Detection of a Change in Quality Control. Computers in Industry 10, 177–183 (1988)

    Article  Google Scholar 

  17. Box, G.E.P.: A General Distribution Theory for a Class of Likelihood Criteria. Biometrika 36, 317–346 (1949)

    Article  MathSciNet  Google Scholar 

  18. Krishnamoorthy, K., Yu, J.: Modified Nel and Van der Merwe Test for the Multivariate Behrens-Fisher Problem. Statistics & Probability Letters 66, 161–169 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Seber, G.A.F.: Multivariate Observations. Wiley, New York (1984)

    Book  MATH  Google Scholar 

  20. Nechval, N., Purgailis, M., Rozevskis, U., Nechval, K.: Adaptive Stochastic Airline Seat Inventory Control under Parametric Uncertainty. In: Dudin, A., De Turck, K. (eds.) ASMTA 2013. LNCS, vol. 7984, pp. 308–323. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  21. Nechval, N., Nechval, K., Berzinsh, G., Purgailis, M., Rozevskis, U.: Stochastic Fatigue Models for Efficient Planning Inspections in Service of Aircraft Structures. In: Al-Begain, K., Heindl, A., Telek, M. (eds.) ASMTA 2008. LNCS, vol. 5055, pp. 114–127. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Nechval, N.A., Nechval, K.N.: Statistical Identification of an Observable Process. Computer Modeling and New Technologies 12, 38–46 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Nechval, N., Nechval, K., Danovich, V., Ribakova, N. (2014). Statistical Techniques for Validation of Simulation and Analytic Stochastic Models. In: Sericola, B., Telek, M., Horváth, G. (eds) Analytical and Stochastic Modeling Techniques and Applications. ASMTA 2014. Lecture Notes in Computer Science, vol 8499. Springer, Cham. https://doi.org/10.1007/978-3-319-08219-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08219-6_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08218-9

  • Online ISBN: 978-3-319-08219-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics