Abstract
This paper presents a performance comparative of GA-PAR SIMONY methodology with five well-known regression algorithms and with different genetic algorithm (GA) configurations. This approach is mainly based on combining GA and feature selection (FS) during model tuning process to achieve better overall parsimonious models that assure good generalization capacities. For this purpose, individuals, already sorted by their fitness function, are rearranged in each iteration depending on the model complexity. The main objective is to analyze the overall model performance achieve with this methodology for each regression algorithm against different real databases and varying the GA setting parameters. Our preliminary results show that two algorithms, multilayer perceptron (MLP) with the Broyden-Fletcher-Goldfarb-Shanno training method and support vector machines for regression (SVR) with radial basis function kernel, performing better with similar features reduction when database has low number of input attributes (\(\lesssim32\)) and it has been used low GA population sizes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
StatLib—Datasets Archive, http://lib.stat.cmu.edu/datasets/
Asuncion, A., Newman, D.: UCI machine learning repository (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html
Aha, D.W., Kibler, D.: Instance-based learning algorithms. Machine Learning, 37–66 (1991)
Calvo-Rolle, J.L., Corchado, E.: A bio-inspired knowledge system for improving combined cycle plant control tuning. Neurocomputing 126, 95–105 (2014)
Chen, N., Ribeiro, B., Vieira, A., Duarte, J., Neves, J.C.: A genetic algorithm-based approach to cost-sensitive bankruptcy prediction. Expert Syst. Appl. 38(10), 12939–12945 (2011)
Corchado, E., Abraham, A., Carvalho, A.: Hybrid intelligent algorithms and applications. Information Sciences 180(14), 2633–2634 (2010)
Corchado, E., Graña, M., Wozniak, M.: Editorial: New trends and applications on hybrid artificial intelligence systems. Neurocomputing 75(1), 61–63 (2012)
Corchado, E., Wozniak, M., Abraham, A., de Carvalho, A.C.P.L.F., Snásel, V.: Recent trends in intelligent data analysis. Neurocomputing 126, 1–2 (2014)
Ding, S.: Spectral and wavelet-based feature selection with particle swarm optimization for hyperspectral classification. JSW 6(7), 1248–1256 (2011)
Drucker, H., Chris, K.B.L., Smola, A., Vapnik, V.: Support vector regression machines. In: Advances in Neural Information Processing Systems 9, vol. 9, pp. 155–161 (1997)
Guerrero, J.L., Berlanga, A., Molina, J.M.: A multi-objective approach for the segmentation issue. Engineering Optimization 44(3), 267–287 (2012)
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: An update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)
Hornik, K., Buchta, C., Zeileis, A.: Open-source machine learning: R meets Weka. Computational Statistics 24(2), 225–232 (2009)
Huang, H.L., Chang, F.L.: Esvm: Evolutionary support vector machine for automatic feature selection and classification of microarray data. Biosystems 90(2), 516–528 (2007)
Menéndez de Llano, R., Bosque, J.L.: Study of neural net training methods in parallel and distributed architectures. Future Gener. Comput. Syst. 26(2), 267–275 (2010)
Michalewicz, Z., Janikow, C.Z.: Handling constraints in genetic algorithms. In: ICGA, pp. 151–157 (1991)
Quinlan, J.R.: Learning with continuous classes. In: 5th Australian Joint Conference on Artificial Intelligence, pp. 343–348 (1992)
R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2013)
Reif, M., Shafait, F., Dengel, A.: Meta-learning for evolutionary parameter optimization of classifiers. Machine Learning 87(3), 357–380 (2012)
Sanz-García, A., Fernández-Ceniceros, J., Fernández-Martínez, R., Martínez-De-Pisón, F.: Methodology based on genetic optimisation to develop overall parsimony models for predicting temperature settings on annealing furnace. Ironmaking and Steelmaking 41(2), 87–98 (2014)
Sanz-García, A., Fernández-Ceniceros, J., Antoñanzas-Torres, F., Martínez-de-Pisón-Ascacibar, F.J.: Parsimonious support vector machines modelling for set points in industrial processes based on genetic algorithm optimization. In: Herrero, A., et al. (eds.) International Joint Conference SOCO’13-CISIS’13-ICEUTE’13. AISC, vol. 239, pp. 1–10. Springer, Heidelberg (2014)
Sedano, J., Curiel, L., Corchado, E., de la Cal, E., Villar, J.R.: A soft computing method for detecting lifetime building thermal insulation failures. Integrated Computer-Aided Engineering 17(2), 103–115 (2010)
Winkler, S.M., Affenzeller, M., Kronberger, G., Kommenda, M., Wagner, S., Jacak, W., Stekel, H.: Analysis of selected evolutionary algorithms in feature selection and parameter optimization for data based tumor marker modeling. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2011, Part I. LNCS, vol. 6927, pp. 335–342. Springer, Heidelberg (2012)
Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn. Morgan Kaufmann, Amsterdam (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Urraca-Valle, R., Sodupe-Ortega, E., Antoñanzas Torres, J., Antoñanzas-Torres, F., Martínez-de-Pisón, F.J. (2014). An Overall Performance Comparative of GA-PARSIMONY Methodology with Regression Algorithms. In: de la Puerta, J., et al. International Joint Conference SOCO’14-CISIS’14-ICEUTE’14. Advances in Intelligent Systems and Computing, vol 299. Springer, Cham. https://doi.org/10.1007/978-3-319-07995-0_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-07995-0_6
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07994-3
Online ISBN: 978-3-319-07995-0
eBook Packages: EngineeringEngineering (R0)