Abstract
Prediction of depth of hypnosis is important in administering optimal anaesthesia during surgical procedure. However, the effect of anaesthetic drugs on human body is a nonlinear time variant system with large inter-patient variability. Such behaviours often caused limitation to the performance of conventional model. This paper explores the possibility of using the Adaptive Neuro-Fuzzy Inference System (ANFIS) to create a model for predicting Bispectral Index (BIS). BIS is a well-studied indicator of hypnotic level. Propofol infusion rate and past values of BIS were used as the input variables for modelling. Result shows that the ANFIS model is capable of predicting BIS very well.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Shafer, S., Stanski, D.: Defining depth of anesthesia. In: Schttler, J., Schwilden, H. (eds.) Modern Anesthetics, Handbook of Experimental Pharmacology, vol. 182, pp. 409–423. Springer, Heidelberg (2008)
Musizza, B., Ribaric, S.: Monitoring the depth of anaesthesia. Sensors 10(12), 10,896–10,935 (2010)
Fahlenkamp, A.V., Peters, D., Biener, I.A., et al.: Evaluation of bispectral index and auditory evoked potentials for hypnotic depth monitoring during balanced xenon anaesthesia compared with sevoflurane. Br. J. Anaesth. 105(3), 334–341 (2010)
Rampil, I.J.: A primer for EEG signal processing in anesthesia. Anesthesiology 89(4), 980–1002 (1998)
Hahn, J.O., Dumont, G., Ansermino, J.: A direct dynamic dose-response model of propofol for individualized anesthesia care. IEEE Trans. Biomed. 59(2), 571–578 (2012)
Rocha, C., Mendona, T., Silva, M.: Individualizing propofol dosage: a multivariate linear model approach. J. Clin. Monitor. Comp., 1–12 (2013)
Sartori, V., Schumacher, P.M., Bouillon, T., Luginbuehl, M., Morari, M.: Online estimation of propofol pharmacodynamic parameters. In: 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005, Shanghai, China, pp. 74–77 (2005)
Sawaguchi, Y., Furutani, E., Shirakami, G., Araki, M., Fukuda, K.: A model-predictive hypnosis control system under total intravenous anesthesia. IEEE Trans. Biomed. 55(3), 874–887 (2008)
Jang, J.S.: Anfis: adaptive-network-based fuzzy inference system. IEEE Trans. Syst., Man, Cybern., Syst. 23(3), 665–685 (1993)
Jang, J.S.: Input selection for anfis learning. In: Proceedings of the Fifth IEEE International Conference on Fuzzy Systems, vol. 2, pp. 1493–1499 (1996)
Esmaeili, V., Assareh, A., Shamsollahi, M.B., Moradi, M., Arefian, N.M.: Designing a fuzzy rule based system to estimate depth of anesthesia. In: IEEE Symposium on Computational Intelligence and Data Mining, CIDM 2007, Honolulu, pp. 681–687 (2007)
Robert, C., Karasinski, P., Arreto, C., Gaudy, J.: Monitoring anesthesia using neural networks: A survey. J. Clin. Monitor. Comp. 17(3-4), 259–267 (2002)
Zhang, X.S., Roy, R.J.: Derived fuzzy knowledge model for estimating the depth of anesthesia. IEEE Trans. Biomed. 48(3), 312–323 (2001)
Brás, S., Gouveia, S., Ribeiro, L., Ferreira, D., Antunes, L., Nunes, C.: Fuzzy logic model to describe anesthetic effect and muscular influence on EEG cerebral state index. Res. Vet. Sci. 94(3), 735–742 (2013)
Jensen, E., Nebot, A.: Comparison of fir and anfis methodologies for prediction of mean blood pressure and auditory evoked potentials index during anaesthesia. In: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Hong Kong, vol. 3, pp. 1385–1388 (1998)
Baig, M.M., Gholam-Hosseini, H., Lee, S.W., Harrison, M.: Detection and classication of hypovolaemia during anaesthesia. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, pp. 357–360 (2011)
Nunes, C., Amorim, P.: A neuro-fuzzy approach for predicting hemodynamic responses during anesthesia. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2008, pp. 5814–5817 (2008)
Zhou, Y., Wu, Y.: Analyses on influence of training data set to neural network supervised learning performance. In: Jin, D., Lin, S. (eds.) CSISE 2011. AISC, vol. 106, pp. 19–25. Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Chang, J.J., Syafiie, S., Ahmad, R.K.R., Lim, T.A. (2014). ANFIS Based Model for Bispectral Index Prediction. In: Herawan, T., Ghazali, R., Deris, M. (eds) Recent Advances on Soft Computing and Data Mining. Advances in Intelligent Systems and Computing, vol 287. Springer, Cham. https://doi.org/10.1007/978-3-319-07692-8_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-07692-8_13
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07691-1
Online ISBN: 978-3-319-07692-8
eBook Packages: EngineeringEngineering (R0)