ANFIS Based Model for Bispectral Index Prediction | SpringerLink
Skip to main content

ANFIS Based Model for Bispectral Index Prediction

  • Conference paper
Recent Advances on Soft Computing and Data Mining

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 287))

Abstract

Prediction of depth of hypnosis is important in administering optimal anaesthesia during surgical procedure. However, the effect of anaesthetic drugs on human body is a nonlinear time variant system with large inter-patient variability. Such behaviours often caused limitation to the performance of conventional model. This paper explores the possibility of using the Adaptive Neuro-Fuzzy Inference System (ANFIS) to create a model for predicting Bispectral Index (BIS). BIS is a well-studied indicator of hypnotic level. Propofol infusion rate and past values of BIS were used as the input variables for modelling. Result shows that the ANFIS model is capable of predicting BIS very well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Shafer, S., Stanski, D.: Defining depth of anesthesia. In: Schttler, J., Schwilden, H. (eds.) Modern Anesthetics, Handbook of Experimental Pharmacology, vol. 182, pp. 409–423. Springer, Heidelberg (2008)

    Google Scholar 

  2. Musizza, B., Ribaric, S.: Monitoring the depth of anaesthesia. Sensors 10(12), 10,896–10,935 (2010)

    Google Scholar 

  3. Fahlenkamp, A.V., Peters, D., Biener, I.A., et al.: Evaluation of bispectral index and auditory evoked potentials for hypnotic depth monitoring during balanced xenon anaesthesia compared with sevoflurane. Br. J. Anaesth. 105(3), 334–341 (2010)

    Article  Google Scholar 

  4. Rampil, I.J.: A primer for EEG signal processing in anesthesia. Anesthesiology 89(4), 980–1002 (1998)

    Article  Google Scholar 

  5. Hahn, J.O., Dumont, G., Ansermino, J.: A direct dynamic dose-response model of propofol for individualized anesthesia care. IEEE Trans. Biomed. 59(2), 571–578 (2012)

    Article  Google Scholar 

  6. Rocha, C., Mendona, T., Silva, M.: Individualizing propofol dosage: a multivariate linear model approach. J. Clin. Monitor. Comp., 1–12 (2013)

    Google Scholar 

  7. Sartori, V., Schumacher, P.M., Bouillon, T., Luginbuehl, M., Morari, M.: Online estimation of propofol pharmacodynamic parameters. In: 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005, Shanghai, China, pp. 74–77 (2005)

    Google Scholar 

  8. Sawaguchi, Y., Furutani, E., Shirakami, G., Araki, M., Fukuda, K.: A model-predictive hypnosis control system under total intravenous anesthesia. IEEE Trans. Biomed. 55(3), 874–887 (2008)

    Article  Google Scholar 

  9. Jang, J.S.: Anfis: adaptive-network-based fuzzy inference system. IEEE Trans. Syst., Man, Cybern., Syst. 23(3), 665–685 (1993)

    Article  Google Scholar 

  10. Jang, J.S.: Input selection for anfis learning. In: Proceedings of the Fifth IEEE International Conference on Fuzzy Systems, vol. 2, pp. 1493–1499 (1996)

    Google Scholar 

  11. Esmaeili, V., Assareh, A., Shamsollahi, M.B., Moradi, M., Arefian, N.M.: Designing a fuzzy rule based system to estimate depth of anesthesia. In: IEEE Symposium on Computational Intelligence and Data Mining, CIDM 2007, Honolulu, pp. 681–687 (2007)

    Google Scholar 

  12. Robert, C., Karasinski, P., Arreto, C., Gaudy, J.: Monitoring anesthesia using neural networks: A survey. J. Clin. Monitor. Comp. 17(3-4), 259–267 (2002)

    Article  Google Scholar 

  13. Zhang, X.S., Roy, R.J.: Derived fuzzy knowledge model for estimating the depth of anesthesia. IEEE Trans. Biomed. 48(3), 312–323 (2001)

    Article  Google Scholar 

  14. Brás, S., Gouveia, S., Ribeiro, L., Ferreira, D., Antunes, L., Nunes, C.: Fuzzy logic model to describe anesthetic effect and muscular influence on EEG cerebral state index. Res. Vet. Sci. 94(3), 735–742 (2013)

    Article  Google Scholar 

  15. Jensen, E., Nebot, A.: Comparison of fir and anfis methodologies for prediction of mean blood pressure and auditory evoked potentials index during anaesthesia. In: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Hong Kong, vol. 3, pp. 1385–1388 (1998)

    Google Scholar 

  16. Baig, M.M., Gholam-Hosseini, H., Lee, S.W., Harrison, M.: Detection and classication of hypovolaemia during anaesthesia. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, pp. 357–360 (2011)

    Google Scholar 

  17. Nunes, C., Amorim, P.: A neuro-fuzzy approach for predicting hemodynamic responses during anesthesia. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2008, pp. 5814–5817 (2008)

    Google Scholar 

  18. Zhou, Y., Wu, Y.: Analyses on influence of training data set to neural network supervised learning performance. In: Jin, D., Lin, S. (eds.) CSISE 2011. AISC, vol. 106, pp. 19–25. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Chang, J.J., Syafiie, S., Ahmad, R.K.R., Lim, T.A. (2014). ANFIS Based Model for Bispectral Index Prediction. In: Herawan, T., Ghazali, R., Deris, M. (eds) Recent Advances on Soft Computing and Data Mining. Advances in Intelligent Systems and Computing, vol 287. Springer, Cham. https://doi.org/10.1007/978-3-319-07692-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07692-8_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07691-1

  • Online ISBN: 978-3-319-07692-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics