Reachability Modeling for Multimodal Networks Prototyping | SpringerLink
Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 290))

  • 1492 Accesses

Abstract

A declarative model aimed at reachability-driven refinement of the multimodal networks (MNs) cyclic steady state space is proposed. The concept of multimodal processes executed in goods/passengers transportation or data transmission networks where several closed loop structure subnetworks interact each other via distinguished subsets of common shared hubs as to provide a variety of demand-responsive goods or data transportation/handling services is employed. Multimodal processes throughput depends on their cycle time that is on cycle time reachable in considered MN. Therefore, searching for the MN’s cyclic steady state behavior the following question is considered: Is the cyclic steady state space reachable in the given network structure? The declarative approach employed makes it possible to evaluate the reachability of cyclic behaviors on a scale that reflects real practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abara, J.: Applying integer linear programming to the fleet assignment problem. Interfaces 19, 4–20 (1989)

    Article  Google Scholar 

  2. Bocewicz, G., Banaszak, Z.: Declarative approach to cyclic steady state space refinement: periodic process scheduling. The International Journal of Advanced Manufacturing Technology 67(1-4), 137–155 (2013)

    Article  Google Scholar 

  3. Grzegorz, B., Zbigniew, B., Paweł, P.: Cyclic Steady State Space Refinement. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Recent Advances in Automation, Robotics and Measuring Techniques. AISC, vol. 267, pp. 11–20. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  4. Korytkowski, P., Rymaszewski, S., Wiśniewski, T.: Ant Colony Optimization for job shop scheduling using multi-attribute dispatching rules. International Journal of Advanced Manufacturing Technology 67, 231–241 (2013)

    Article  Google Scholar 

  5. Levner, E., Kats, V., Alcaide, D., Pablo, L., Cheng, T.C.E.: Complexity of cyclic scheduling problems: A state-of-the-art survey. Computers & Industrial Engineering 59(2), 352–361 (2010)

    Article  Google Scholar 

  6. Pawlewski, P.: Multimodal approach to model and design supply chain. In: Proceedings of 7th IFAC Conference on Manufacturing Modelling, Management, and Control, St. Petersburg, pp. 2110–2115 (2013)

    Google Scholar 

  7. Polak, M., Majdzik, P., Banaszak, Z., Wójcik, R.: The performance evaluation tool for automated prototyping of concurrent cyclic processes. Fundamenta Informaticae 60(1-4), 269–289 (2004)

    MATH  MathSciNet  Google Scholar 

  8. Puente, V., Gregorio, J.A., Beivide, R., Vallejo, F.: A New Routing Mechanism for Networks with Irregular Topology. In: Proceedings of Conference of Supercomputing, ACM/IEEE (2001)

    Google Scholar 

  9. Relich, M.: A declarative approach to new product development in the automotive industry. In: Environmental Issues in Automotive Industry, EcoProduction, pp. 23–45 (2014)

    Google Scholar 

  10. Różewski, P., Małachowski, B.: System for creative distance learning environment development based on competence management. In: Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds.) KES 2010, Part IV. LNCS, vol. 6279, pp. 180–189. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Sitek, P., Wikarek, J.: A hybrid approach to supply chain modeling and optimization. In: Proceedings of Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 1223–1230 (2013)

    Google Scholar 

  12. Sitek, P., Wikarek, J.: A hybrid method for modeling and solving constrained search problems. In: Proceedings of Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 385–392 (2013)

    Google Scholar 

  13. Song, J.-S., Lee, T.E.: Petri net modeling and scheduling for cyclic job shops with blocking. Computers & Industrial Engineering 34(2), 281–295 (1998)

    Article  MathSciNet  Google Scholar 

  14. Von Kampmeyer, T.: Cyclic scheduling problems. Ph.D. Dissertation, Fachbereich Mathematik/Informatik, Universität Osnabrück (2006)

    Google Scholar 

  15. Yu, H., Lu, F.: A multi-modal route planning approach with an improved genetic algorithm. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 38, 343–348 (2010)

    Google Scholar 

  16. Zhang, X., He, Z., Pan, Y.: Study on Multimodal Transport Network Model Base on Genetic Algorithm Method. In: ICLEM, pp. 3514–3520 (2010)

    Google Scholar 

  17. Zidi, S., Maouche, S.: Ant Colony Optimization for the rescheduling of multimodal transport networks. In: IMACS Proceedings of Multiconference on Computational, Engineering in Systems Applications, vol. 1, pp. 965–971 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Bocewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bocewicz, G., Wójcik, R., Banaszak, Z. (2014). Reachability Modeling for Multimodal Networks Prototyping. In: Omatu, S., Bersini, H., Corchado, J., Rodríguez, S., Pawlewski, P., Bucciarelli, E. (eds) Distributed Computing and Artificial Intelligence, 11th International Conference. Advances in Intelligent Systems and Computing, vol 290. Springer, Cham. https://doi.org/10.1007/978-3-319-07593-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07593-8_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07592-1

  • Online ISBN: 978-3-319-07593-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics