Mapping 3D Underwater Environments with Smoothed Submaps | SpringerLink
Skip to main content

Mapping 3D Underwater Environments with Smoothed Submaps

  • Chapter
Field and Service Robotics

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 105))

Abstract

This paper presents a technique for improved mapping of complex underwater environments. Autonomous underwater vehicles (AUVs) are becoming valuable tools for inspection of underwater infrastructure, and can create 3D maps of their environment using high-frequency profiling sonar. However, the quality of these maps is limited by the drift in the vehicle’s navigation system.We have developed a technique for simultaneous localization and mapping (SLAM) by aligning point clouds gathered over a short time scale using the iterative closest point (ICP) algorithm. To improve alignment, we have developed a system for smoothing these “submaps” and removing outliers. We integrate the constraints from submap alignment into a 6-DOF pose graph, which is optimized to estimate the full vehicle trajectory over the duration of the inspection task. We present real-world results using the Bluefin Hovering AUV, as well as analysis of a synthetic data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T.: Computing and rendering point set surfaces. IEEE Transactions on Visualization and Computer Graphics 9(1), 3–15 (2003)

    Article  Google Scholar 

  2. Barkby, S., Williams, S., Pizarro, O., Jakuba, M.: An efficient approach to bathymetric SLAM. In: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, IROS (2009)

    Google Scholar 

  3. Beall, C., Dellaert, F., Mahon, I., Williams, S.: Bundle adjustment in large-scale 3D reconstructions based on underwater robotic surveys. In: Proc. of the IEEE/MTS OCEANS Conf. and Exhibition (2011)

    Google Scholar 

  4. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Machine Intell. 14(2), 239–256 (1996)

    Article  Google Scholar 

  5. Borrmann, D., Elseberg, J., Lingemann, K., Nuchter, A., Hertzberg, J.: Globally consistent 3D mapping with scan matching. J. of Robotics and Autonomous Systems 56(2), 130–142 (2008)

    Article  Google Scholar 

  6. Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: SIGGRAPH, pp. 303–312 (1996)

    Google Scholar 

  7. Dellaert, F., Kaess, M.: Square Root SAM: Simultaneous localization and mapping via square root information smoothing. Intl. J. of Robotics Research 25(12), 1181–1203 (2006)

    Article  MATH  Google Scholar 

  8. Englot, B., Hover, F.: Sampling-based coverage path planning for inspection of complex structures. In: Proc. of Intl. Conf. on Automated Planning and Scheduling (2012)

    Google Scholar 

  9. Eustice, R., Singh, H., Leonard, J., Walter, M., Ballard, R.: Visually navigating the RMS Titanic with SLAM information filters. In: Robotics: Science and Systems, RSS (2005)

    Google Scholar 

  10. Fairfield, N., Kantor, A.G., Wettergreen, D.: Real-time SLAM with octree evidence grids for exploration in underwater tunnels. J. of Field Robotics (2007)

    Google Scholar 

  11. Folkesson, J., Leonard, J.: Autonomy through SLAM for an underwater robot. In: Proc. of the Intl. Symp. of Robotics Research, ISRR (2009)

    Google Scholar 

  12. Hover, F., Eustice, R., Kim, A., Englot, B., Johannsson, H., Kaess, M., Leonard, J.: Advanced perception, navigation and planning for autonomous in-water ship hull inspection. Intl. J. of Robotics Research 31(12), 1445–1464 (2012)

    Article  Google Scholar 

  13. Kaess, M., Ranganathan, A., Dellaert, F.: iSAM: Incremental smoothing and mapping. IEEE Trans. Robotics 24(6), 1365–1378 (2008)

    Article  Google Scholar 

  14. Kunz, C., Singh, H.: Map building fusing acoustic and visual information using autonomous underwater vehicles. J. of Field Robotics 30(5), 763–783 (2013)

    Article  Google Scholar 

  15. Nüchter, A., Hertzberg, J.: Towards semantic maps for mobile robots. J. of Robotics and Autonomous Systems 56(11), 915–926 (2008), doi: http://dx.doi.org/10.1016/j.robot.2008.08.001

    Article  Google Scholar 

  16. Ribas, D., Ridao, P., Tardós, J., Neira, J.: Underwater SLAM in man-made structured environments. Journal of Field Robotics 25(11-12), 898–921 (2008)

    Article  MATH  Google Scholar 

  17. Roman, C., Singh, H.: Improved vehicle based multibeam bathymetry using sub-maps and SLAM. In: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), pp. 3662–3669 (2005)

    Google Scholar 

  18. Roman, C., Singh, H.: A self-consistent bathymetric mapping algorithm. J. of Field Robotics 24(1), 23–50 (2007)

    Article  MATH  Google Scholar 

  19. Rusu, R., Cousins, S.: 3D is here: Point Cloud Library (PCL). In: IEEE Intl. Conf. on Robotics and Automation (ICRA), Shanghai, China (2011)

    Google Scholar 

  20. Rusu, R.B., Marton, Z.C., Blodow, N., Dolha, M., Beetz, M.: Towards 3D point cloud based object maps for household environments. J. of Robotics and Autonomous Systems 56(11), 927–941 (2008)

    Article  Google Scholar 

  21. Thrun, S., Liu, Y., Koller, D., Ng, A., Ghahramani, Z., Durrant-Whyte, H.: Simultaneous localization and mapping with sparse extended information filters. Intl. J. of Robotics Research 23(7) (2004)

    Google Scholar 

  22. Walter, M., Hover, F., Leonard, J.: SLAM for ship hull inspection using exactly sparse extended information filters. In: IEEE Intl. Conf. on Robotics and Automation (ICRA), pp. 1463–1470 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark VanMiddlesworth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

VanMiddlesworth, M., Kaess, M., Hover, F., Leonard, J.J. (2015). Mapping 3D Underwater Environments with Smoothed Submaps. In: Mejias, L., Corke, P., Roberts, J. (eds) Field and Service Robotics. Springer Tracts in Advanced Robotics, vol 105. Springer, Cham. https://doi.org/10.1007/978-3-319-07488-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07488-7_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07487-0

  • Online ISBN: 978-3-319-07488-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics