Macro-adaptation in Conversational Intelligent Tutoring Matters | SpringerLink
Skip to main content

Macro-adaptation in Conversational Intelligent Tutoring Matters

  • Conference paper
Intelligent Tutoring Systems (ITS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8474))

Included in the following conference series:

Abstract

We present in this paper the findings of a study on the role of macro-adaptation in conversational intelligent tutoring. Macro-adaptivity refers to a system’s capability to select appropriate instructional tasks for the learner to work on. Micro-adaptivity refers to a system’s capability to adapt its scaffolding while the learner is working on a particular task. We compared an intelligent tutoring system that offers both macro- and micro-adaptivity (fully-adaptive) with an intelligent tutoring system that offers only micro-adaptivity. Experimental data analysis revealed that learning gains were significantly higher for students randomly assigned to the fully-adaptive intelligent tutor condition compared to the micro-adaptive-only condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alonzo, A.C., Steedle, J.T.: Developing and assessing a force and motion learning progression. Science Education 93, 389–421 (2009)

    Article  Google Scholar 

  2. Brusilovsky, P.L.: A Framework for Intelligent Knowledge Sequencing and Task Sequencing. In: Frasson, C., Gauthier, G., McCalla, G.I. (eds.) ITS 1992. LNCS, vol. 608, pp. 499–506. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  3. Dedic, H., Rosenfield, S., Lasry, N.: Are All Wrong FCI Answers Equivalent? In: Proceedings of the Physics Education Research Conference, Portland, Oregon, July 21-22 (2010)

    Google Scholar 

  4. Hestenes, D., Wells, M., Swackhamer, G.: Force concept inventory. Phys. Teach. 30, 141–158 (1992)

    Article  Google Scholar 

  5. Evens, M., Michael, J.: One-on-One Tutoring by Humans and Computers. Lawrence Erlbaum Associates, Inc. (2006)

    Google Scholar 

  6. Graesser, A.C., VanLehn, K., Rose, C.P., Jordan, P., Harter, D.: Intelligent tutoring systems with conversational dialogue. AI Magazine 22(4), 39–41 (2001)

    Google Scholar 

  7. Lehman, B., D’Mello, S.K., Strain, A.C., Gross, M., Dobbins, A., Wallace, P., Millis, K., Graesser, A.C.: Inducing and tracking confusion with contradictions during critical thinking and scientific reasoning. In: Biswas, G., Bull, S., Kay, J., Mitrovic, A. (eds.) AIED 2011. LNCS, vol. 6738, pp. 171–178. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Rus, V., D’Mello, S., Hu, X., Graesser, A.C.: Recent Advances in Conversational Intelligent Tutoring Systems. AI Magazine 34(3), 42–54 (2013)

    Google Scholar 

  9. Sabo, K.E., Atkinson, R.K., Barrus, A.L., Joseph, S.S., Perez, R.S.: Searching for the two sigma advantage: Evaluating algebra intelligent tutors. Computers in Human Behavior 29(4), 1833–1840 (2013)

    Article  Google Scholar 

  10. VanLehn, K.: The Behavior of Tutoring Systems. International Journal of Artificial Intelligence in Education 16, 227–265 (2006)

    Google Scholar 

  11. VanLehn, K., Lynch, C., Schulze, K., Shapiro, J.A., Shelby, R., Taylor, L., Treacy, D., Weinstein, A., Wintersgill, M.: The Andes Physics Tutoring System: Lessons Learned. International Journal of Artificial Intelligence and Education 15(3) (2005)

    Google Scholar 

  12. VanLehn, K., Jordan, P., Litman, D.: Developing pedagogically effective tutorial dialogue tactics: Experiments and a testbed. In: Proceedings of SLaTE Workshop on Speech and Language Technology in Education (ISCA Tutorial and Research Workshop) (2007)

    Google Scholar 

  13. VanLehn, K.: The Relative Effectiveness of Human Tutoring, Intelligent Tutoring Systems, and Other Tutoring Systems. Educational Psychologist 46(4), 197–221 (2011)

    Article  Google Scholar 

  14. Wang, J., Bao, L.: Analyzing Force Concept Inventory with Item Response Theory. Am. J. Phys. 78(10), 1064–1070 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Rus, V., Stefanescu, D., Baggett, W., Niraula, N., Franceschetti, D., Graesser, A.C. (2014). Macro-adaptation in Conversational Intelligent Tutoring Matters. In: Trausan-Matu, S., Boyer, K.E., Crosby, M., Panourgia, K. (eds) Intelligent Tutoring Systems. ITS 2014. Lecture Notes in Computer Science, vol 8474. Springer, Cham. https://doi.org/10.1007/978-3-319-07221-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07221-0_29

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07220-3

  • Online ISBN: 978-3-319-07221-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics