Signal Randomness Measure for BSS Ensemble Predictors | SpringerLink
Skip to main content

Signal Randomness Measure for BSS Ensemble Predictors

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8468))

Included in the following conference series:

Abstract

In this article we present the application of novel noise measure in ensemble method based on blind signal separation methods. In this approach we decompose the set of models’ results into basis latent components with destructive or constructive impact on the prediction. The crucial step in such model aggregation is proper identification of destructive components which can be treated as noisy factors. Presented method assesses the randomness of signals using a new measure of variability which helps to compare analyzed signal with some typical noise models. The experiments performed on electric load data using different blind separation algorithms contributed to model improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anscombe, F.J.: Graphs in statistical analysis. The American Statistician 27, 17–21 (1973)

    Google Scholar 

  2. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  3. Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing. John Wiley, Chichester (2002)

    Google Scholar 

  4. Cichocki, A., Amari, S., Siwek, K., Tanaka, T., Phan, A.H., Zdunek, R., Cruces, S., Georgiev, P., Washizawa, Y., Leonowicz, Z., Bakardjian, H., Rutkowski, T., Choi, S., Belouchrani, A., Barros, A., Thawonmas, R., Hoya, T., Hashimoto, W., Terazono, Y.: ICALAB Toolboxes, http://www.bsp.brain.riken.jp/ICALAB

  5. Clements, R.T.: Combining forecasts: A review and annotated bibliography. International Journal of Forecasting 5, 559–581 (1989)

    Article  Google Scholar 

  6. Comon, P., Jutten, C.: Handbook of Blind Source Separation: Independent Component Analysis and Applications. Academic Press (2010)

    Google Scholar 

  7. Hamilton, J.D.: Time series analysis. Princeton University Press, Princeton (1994)

    Google Scholar 

  8. Haykin, S.: Neural networks: a comprehensive foundation. Macmillan, New York (1994)

    Google Scholar 

  9. Hoeting, J., Madigan, D., Raftery, A., Volinsky, C.: Bayesian model averaging: a tutorial. Statistical Science 14, 382–417 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hurst, H.E.: Long term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers 116, 770–799 (1951)

    Google Scholar 

  11. Hyvarinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley, New York (2001)

    Google Scholar 

  12. Rodgers, J.L., Nicewander, W.A.: Thirteen ways to look at the correlation coefficient. The American Statistician 42(1), 59–66 (1988)

    Article  Google Scholar 

  13. Shiryaev, A.N.: Essentials of stochastic finance: facts, models, theory. World Scientific Publishing, Singapore (1999)

    Google Scholar 

  14. Szupiluk, R., Wojewnik, P., Zabkowski, T.: Model Improvement by the Statistical Decomposition. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 1199–1204. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Szupiluk, R., Wojewnik, P., Ząbkowski, T.: Prediction Improvement via Smooth Component Analysis and Neural Network Mixing. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4132, pp. 133–140. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Szupiluk, R., Wojewnik, P., Zabkowski, T.: Noise detection for ensemble methods. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part I. LNCS (LNAI), vol. 6113, pp. 471–478. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Therrien, C.W.: Discrete Random Signals and Statistical Signal Processing. Prentice Hall, New Jersey (1992)

    Google Scholar 

  18. Vaseghi, S.V.: Advanced signal processing and digital noise reduction. John Wiley and Sons, Chichester (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Szupiluk, R., Ząbkowski, T. (2014). Signal Randomness Measure for BSS Ensemble Predictors. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2014. Lecture Notes in Computer Science(), vol 8468. Springer, Cham. https://doi.org/10.1007/978-3-319-07176-3_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07176-3_50

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07175-6

  • Online ISBN: 978-3-319-07176-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics