Map-Matching in a Real-Time Traffic Monitoring Service | SpringerLink
Skip to main content

Map-Matching in a Real-Time Traffic Monitoring Service

  • Conference paper
Beyond Databases, Architectures, and Structures (BDAS 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 424))

  • 1423 Accesses

Abstract

We describe a prototype implementation of a real time traffic monitoring service that uses GPS positioning information received from moving vehicles to calculate average speed and travel time and assign them to road segments. The primary factor for reliability of determined parameters is the correct calculation of a vehicle location on a road segment, which is realized by a map-matching algorithm. We present an a new incremental map-matching algorithm based on Hidden Markov Model (HMM). A HMM state corresponds to a road segment and a sensor reading to an observation. The HMM model is updated on arrival of new GPS data by alternating operations: expansion and contraction. In the later step a part of determined trajectory is output. We present also results of conducted experiments.

This work is supported by the European Regional Development Fund within INSIGMA project no. POIG.01.01.02-00-062/09.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. INSIGMA project, http://insigma.kt.agh.edu.pl (last accessed: December 2013)

  2. CodeCodexWiki: Calculate distance between two points on a globe, http://www.codecodex.com/wiki/Calculate_Distance_Between_Two_Points_on_a_Globe (online: last accessed: December 2013)

  3. Fu, M., Li, J., Wang, M.: A hybrid map matching algorithm based on fuzzy comprehensive judgment. In: Proceedings of the 7th International IEEE Conference on Intelligent Transportation Systems, pp. 613–617 (2004)

    Google Scholar 

  4. Google Official Blog: The bright side of sitting in traffic: Crowdsourcing road congestion data, http://googleblog.blogspot.com/2009/08/bright-side-of-sitting-in-traffic.html (online: last accessed: December 2013)

  5. Greenfeld, J.S.: Matching GPS observations to locations on a digital map. In: National Research Council (US). Transportation Research Board. Meeting (81st: 2002: Washington, DC). Preprint CD-ROM (2002)

    Google Scholar 

  6. Gurtam: Commercial GPS solutions for vehicle tracking and fleet management, http://gurtam.com/en/ (online: last accessed: December 2013)

  7. Gustafsson, F., Gunnarsson, F., Bergman, N., Forssell, U., Jansson, J., Karlsson, R., Nordlund, P.J.: Particle filters for positioning, navigation, and tracking. IEEE Transactions on Signal Processing 50(2), 425–437 (2002)

    Article  Google Scholar 

  8. INRIX: Inrix home page, http://www.inrix.com/default.asp (online: last accessed: December 2013)

  9. Marchal, F., Hackney, J., Axhausen, K.: Efficient map-matching of large GPS data sets-tests on a speed monitoring experiment in Zurich. Arbeitsbericht Verkehrs-und Raumplanung 244 (2004)

    Google Scholar 

  10. Newson, P., Krumm, J.: Hidden Markov map matching through noise and sparseness. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 336–343. ACM (2009)

    Google Scholar 

  11. Ochieng, W.Y., Quddus, M., Noland, R.B.: Map-matching in complex urban road networks. Revista Brasileira de Cartografia 2(55) (2009)

    Google Scholar 

  12. OpenStreetMap: OpenStreetMap Wiki (2013), http://wiki.openstreetmap.org/wiki/Main_Page (Online; accessed December 2013)

  13. Quddus, M.A., Ochieng, W.Y., Noland, R.B.: Current map-matching algorithms for transport applications: State-of-the art and future research directions. Transportation Research Part C: Emerging Technologies 15(5), 312–328 (2007)

    Article  Google Scholar 

  14. Quddus, M.A., Ochieng, W.Y., Zhao, L., Noland, R.B.: A general map matching algorithm for transport telematics applications. GPS Solutions 7(3), 157–167 (2003), http://dx.doi.org/10.1007/s10291-003-0069-z

    Article  Google Scholar 

  15. Rabiner, L., Juang, B.: An introduction to hidden Markov models. IEEE ASSP Magazine 3(1), 4–16 (1986)

    Article  Google Scholar 

  16. Szwed, P., Kadluczka, P., Chmiel, W., Glowacz, A., Sliwa, J.: Ontology based integration and decision support in the Insigma route planning subsystem. In: FedCSIS, pp. 141–148 (2012)

    Google Scholar 

  17. Thiagarajan, A., Ravindranath, L., LaCurts, K., Madden, S., Balakrishnan, H., Toledo, S., Eriksson, J.: Vtrack: accurate, energy-aware road traffic delay estimation using mobile phones. In: Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems, pp. 85–98. ACM (2009)

    Google Scholar 

  18. University of California, Berkeley: Mobile millenium project, http://traffic.berkeley.edu/ (online: last accessed: December 2013)

  19. White, C.E., Bernstein, D., Kornhauser, A.L.: Some map matching algorithms for personal navigation assistants. Transportation Research Part C: Emerging Technologies 8(1), 91–108 (2000)

    Article  Google Scholar 

  20. Wu, D., Zhu, T., Lv, W., Gao, X.: A heuristic map-matching algorithm by using vector-based recognition. In: International Multi-Conference on Computing in the Global Information Technology, ICCGI 2007, p. 18 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Szwed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Szwed, P., Pekala, K. (2014). Map-Matching in a Real-Time Traffic Monitoring Service. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures, and Structures. BDAS 2014. Communications in Computer and Information Science, vol 424. Springer, Cham. https://doi.org/10.1007/978-3-319-06932-6_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06932-6_41

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06931-9

  • Online ISBN: 978-3-319-06932-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics