An Effective Way of Storing and Accessing Very Large Transition Matrices Using Multi-core CPU and GPU Architectures | SpringerLink
Skip to main content

An Effective Way of Storing and Accessing Very Large Transition Matrices Using Multi-core CPU and GPU Architectures

  • Conference paper
Beyond Databases, Architectures, and Structures (BDAS 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 424))

Abstract

The topic of probabilistic model checking algorithms of Markov processes makes the problem of storing and processing of very large transition matrices crucial. While the symbolic approach utilises very effective storage and access methods, like Multi–terminal Binary Decision Diagrams, the traditional explicit method of representing and solving the model using sparse matrices has many advantages, especially when we concired the flexibility of computing of different properties. We show and examine a compact representation of a very large transition matrix in the sparse form. The technique employs an effective method of compression, storage, and accessing of the matrix and is suitable for use in mutli-core CPU and GPU environments. Such large transition matrices consume a lot of space and cannot be considered as typical types of data for storage in database systems. Nevertheless, their storage and efficient access to them could be beneficial for solving of Markov models, so constructing specialised compression methods is obviously the way to go.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baskaran, M., Bordawekar, R.: Optimizing sparse matrix-vector multiplication on GPUs using compile-time and run-time strategies. Tech. Rep. RC24704 (W0812-047), IBM Research Report (2008)

    Google Scholar 

  2. Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on cuda. Tech. Rep. NVR-2008-004, NVIDIA Technical Report (2008)

    Google Scholar 

  3. Berard, B., Bidoit, M., Finkel, A.: Systems and Software Verification: Model-Checking Techniques and Tools. Springer, Berlin (2001)

    Book  Google Scholar 

  4. Bryant, R.: Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers 35, 677–691 (1986)

    Article  MATH  Google Scholar 

  5. Ciura, M., Deorowicz, S.: How to squeeze a lexicon. Software–Practice and Experience 31, 1077–1090 (2001)

    Article  MATH  Google Scholar 

  6. Deavours, D., Sanders, W.: An efficient disk-based tool for solving very large markov models. In: Marie, R., Plateau, B., Calzarossa, M.C., Rubino, G.J. (eds.) TOOLS 1997. LNCS, vol. 1245, pp. 58–71. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  7. Edmund, M., Clarke, J., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)

    Google Scholar 

  8. Kikuchi, S., Matsumoto, Y.: Performance modeling of concurrent live migration operations in cloud computing systems using PRISM probabilistic model checker. In: Proceedings of the 4th International Conference on Cloud Computing, pp. 49–56 (2011)

    Google Scholar 

  9. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Mukunoki, D., Takahashi, D.: Optimization of sparse matrix-vector multiplication for CRS format on NVIDIA kepler architecture GPUs. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part V. LNCS, vol. 7975, pp. 211–223. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Nowak, M., Pecka, P.: Reducing the number of states for markovian model of optical slotted ring network. In: Balandin, S., Dunaytsev, R., Koucheryavy, Y. (eds.) ruSMART 2010. LNCS, vol. 6294, pp. 231–241. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. OpenMP 2002: OpenMP architecture review board, OpenMP C and C++ application program interface (2002), http://www.openmp.org/mp-documents/cspec20.pdf

  13. Parker, D.: Implementation of Symbolic Model Checking for Probabilistic Systems. Ph.D. thesis, University of Birmingham (2002)

    Google Scholar 

  14. Pecka, P., Deorowicz, S., Nowak, M.: Efficient Representation of Transition Matrix in the Markov Process Modeling of Computer Networks. In: Czachórski, T., Kozielski, S., Stańczyk, U. (eds.) Man-Machine Interactions 2. AISC, vol. 103, pp. 457–464. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Rabih, D., Gorgo, G., Pekergin, N., Vincent, J.: Steady state property verification of very large systems. International Journal of Critical Computer-Based Systems 2, 309–331 (2011)

    Article  Google Scholar 

  16. El Rabih, D., Pekergin, N.: Statistical model checking using perfect simulation. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 120–134. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  17. Saad, Y.: Projection methods for solving large sparse eigenvalue problems. In: Adelsberger, H.H., Lazanský, J., Mařík, V. (eds.) Education in CIM 1995. LNCS, vol. 973, pp. 121–144. Springer, Heidelberg (1995)

    Google Scholar 

  18. Sidje, R.: Parallel Algorithms for Large Sparse Matrix Exponentials: application to numerical transient analysis of Markov processes. Ph.D. thesis, University of Rennes (1994)

    Google Scholar 

  19. Stewart, W.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press (1994)

    Google Scholar 

  20. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs. Automated Software Engineering Journal 10, 203–232 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bożena Wieczorek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Wieczorek, B., Połomski, M., Pecka, P., Deorowicz, S. (2014). An Effective Way of Storing and Accessing Very Large Transition Matrices Using Multi-core CPU and GPU Architectures. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures, and Structures. BDAS 2014. Communications in Computer and Information Science, vol 424. Springer, Cham. https://doi.org/10.1007/978-3-319-06932-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06932-6_31

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06931-9

  • Online ISBN: 978-3-319-06932-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics