Abstract
The topic of probabilistic model checking algorithms of Markov processes makes the problem of storing and processing of very large transition matrices crucial. While the symbolic approach utilises very effective storage and access methods, like Multi–terminal Binary Decision Diagrams, the traditional explicit method of representing and solving the model using sparse matrices has many advantages, especially when we concired the flexibility of computing of different properties. We show and examine a compact representation of a very large transition matrix in the sparse form. The technique employs an effective method of compression, storage, and accessing of the matrix and is suitable for use in mutli-core CPU and GPU environments. Such large transition matrices consume a lot of space and cannot be considered as typical types of data for storage in database systems. Nevertheless, their storage and efficient access to them could be beneficial for solving of Markov models, so constructing specialised compression methods is obviously the way to go.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baskaran, M., Bordawekar, R.: Optimizing sparse matrix-vector multiplication on GPUs using compile-time and run-time strategies. Tech. Rep. RC24704 (W0812-047), IBM Research Report (2008)
Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on cuda. Tech. Rep. NVR-2008-004, NVIDIA Technical Report (2008)
Berard, B., Bidoit, M., Finkel, A.: Systems and Software Verification: Model-Checking Techniques and Tools. Springer, Berlin (2001)
Bryant, R.: Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers 35, 677–691 (1986)
Ciura, M., Deorowicz, S.: How to squeeze a lexicon. Software–Practice and Experience 31, 1077–1090 (2001)
Deavours, D., Sanders, W.: An efficient disk-based tool for solving very large markov models. In: Marie, R., Plateau, B., Calzarossa, M.C., Rubino, G.J. (eds.) TOOLS 1997. LNCS, vol. 1245, pp. 58–71. Springer, Heidelberg (1997)
Edmund, M., Clarke, J., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
Kikuchi, S., Matsumoto, Y.: Performance modeling of concurrent live migration operations in cloud computing systems using PRISM probabilistic model checker. In: Proceedings of the 4th International Conference on Cloud Computing, pp. 49–56 (2011)
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)
Mukunoki, D., Takahashi, D.: Optimization of sparse matrix-vector multiplication for CRS format on NVIDIA kepler architecture GPUs. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part V. LNCS, vol. 7975, pp. 211–223. Springer, Heidelberg (2013)
Nowak, M., Pecka, P.: Reducing the number of states for markovian model of optical slotted ring network. In: Balandin, S., Dunaytsev, R., Koucheryavy, Y. (eds.) ruSMART 2010. LNCS, vol. 6294, pp. 231–241. Springer, Heidelberg (2010)
OpenMP 2002: OpenMP architecture review board, OpenMP C and C++ application program interface (2002), http://www.openmp.org/mp-documents/cspec20.pdf
Parker, D.: Implementation of Symbolic Model Checking for Probabilistic Systems. Ph.D. thesis, University of Birmingham (2002)
Pecka, P., Deorowicz, S., Nowak, M.: Efficient Representation of Transition Matrix in the Markov Process Modeling of Computer Networks. In: Czachórski, T., Kozielski, S., Stańczyk, U. (eds.) Man-Machine Interactions 2. AISC, vol. 103, pp. 457–464. Springer, Heidelberg (2011)
Rabih, D., Gorgo, G., Pekergin, N., Vincent, J.: Steady state property verification of very large systems. International Journal of Critical Computer-Based Systems 2, 309–331 (2011)
El Rabih, D., Pekergin, N.: Statistical model checking using perfect simulation. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 120–134. Springer, Heidelberg (2009)
Saad, Y.: Projection methods for solving large sparse eigenvalue problems. In: Adelsberger, H.H., Lazanský, J., Mařík, V. (eds.) Education in CIM 1995. LNCS, vol. 973, pp. 121–144. Springer, Heidelberg (1995)
Sidje, R.: Parallel Algorithms for Large Sparse Matrix Exponentials: application to numerical transient analysis of Markov processes. Ph.D. thesis, University of Rennes (1994)
Stewart, W.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press (1994)
Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs. Automated Software Engineering Journal 10, 203–232 (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Wieczorek, B., Połomski, M., Pecka, P., Deorowicz, S. (2014). An Effective Way of Storing and Accessing Very Large Transition Matrices Using Multi-core CPU and GPU Architectures. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures, and Structures. BDAS 2014. Communications in Computer and Information Science, vol 424. Springer, Cham. https://doi.org/10.1007/978-3-319-06932-6_31
Download citation
DOI: https://doi.org/10.1007/978-3-319-06932-6_31
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-06931-9
Online ISBN: 978-3-319-06932-6
eBook Packages: Computer ScienceComputer Science (R0)