Abstract
This work presents the modification of backward inference algorithm for rule knowledge bases. Proposed algorithm extracts information of internal rules dependencies and performs only promising recursive calls. Optimization relies on reducing the number of rules searched for each run of inference and reducing the number of unnecessary recursive calls. We assume that the rule knowledge base itself contains enough information, which allow to improve the efficiency of the classic algorithms of the inference and we propose the decision units conception as tool for extracting and modeling such information. The first part of the work briefly presents backward inference algorithms in its classical version, next part of the work describes the decision units conception, then the utilization of decision units in optimization of inference algorithm is described and the modified versions of algorithm are presented. The preliminary evaluation of modified versions of algorithm finish presented work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chandru, V., Hooker, J.: Optimization Methods for Logical Inference. John Wiley & Sons (2011)
Luger, G.: Artificial Intelligence. Addison Wesley, England (2000)
Nowak, A., Siminski, R., Wakulicz-Deja, A.: Two-way optimizations of inference for rule knowledge bases. In: Proceedings of International Conference CS&P 2008, Concurrency, Specification and Programming, pp. 398–409 (2009)
Nowak-Brzezińska, A., Simiński, R.: Knowledge mining approach for optimization of inference processes in rule knowledge bases. In: Herrero, P., Panetto, H., Meersman, R., Dillon, T. (eds.) OTM 2012 Workshops. LNCS, vol. 7567, pp. 534–537. Springer, Heidelberg (2012), http://dx.doi.org/10.1007/978-3-642-33618-8_70
Online information: Reasoning About Rete (2001), http://www.haley.com
Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall (2003)
Simiński, R., Nowak-Brzezińska, A., Jach, T., Xięski, T.: Towards a practical approach to discover internal dependencies in rule-based knowledge bases. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS, vol. 6954, pp. 232–237. Springer, Heidelberg (2011), http://dx.doi.org/10.1007/978-3-642-24425-4_32
Siminski, R., Wakulicz-Deja, A.: Application of decision units in knowledge engineering. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 721–726. Springer, Heidelberg (2004), http://dx.doi.org/10.1007/978-3-540-25929-9_91
Smith, D.E., Genesereth, M.R., Ginsberg, M.L.: Controlling recursive inference. Artificial Intelligence 30(3), 343–389 (1986), http://www.sciencedirect.com/science/article/pii/0004370286900032
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Simiński, R. (2014). Extraction of Rules Dependencies for Optimization of Backward Inference Algorithm. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures, and Structures. BDAS 2014. Communications in Computer and Information Science, vol 424. Springer, Cham. https://doi.org/10.1007/978-3-319-06932-6_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-06932-6_19
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-06931-9
Online ISBN: 978-3-319-06932-6
eBook Packages: Computer ScienceComputer Science (R0)