Nondeterministic Decision Rules in Rule-Based Classifier | SpringerLink
Skip to main content

Nondeterministic Decision Rules in Rule-Based Classifier

  • Conference paper
Beyond Databases, Architectures, and Structures (BDAS 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 424))

  • 1376 Accesses

Abstract

In the paper is discussed the truncated nondeterministic rules and their role in an evaluation of classification model. The nondeterministic rules are created as the result of shorting deterministic rules in accordance with the principle of minimum description length (MDL). As deterministic rules in database we treat the full objects description in a meaning of descriptors conjunction. The nondeterministic rules are calculated in polynomial time by using greedy strategy.

The classification model is composed in two steps process. In the first step deterministic and nondeterministic rules are constructed. Next these rules are used for classifier evaluation. The evaluation results are compared with classifiers only based on deterministic rules creating by different algorithms. The experiments shows that such nondeterministic rules could be treat as an extra knowledge about data. This knowledge is able to improve the classification quality. It should be pointed out that classification process requires tuning some of their parameters relative to analyzed data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rosetta, http://www.lcb.uu.se/tools/rosetta/

  2. Rough Set Exploration System, http://logic.mimuw.edu.pl/~rses/

  3. Agrawal, R., Imieliński, T., Swami, A.: Mining associations rules between sets of items in massive databases. In: Buneman, P., Jajodia, S. (eds.) Proc. of the ACM-SIGMOD 1993 International Conference on Management of Data, Washington, D.C., pp. 207–216 (1993)

    Google Scholar 

  4. Bazan, J., Szczuka, M.S., Wojna, A., Wojnarski, M.: On the evolution of rough set exploration system. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 592–601. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Delimata, P., Marszał-Paszek, B., Moshkov, M., Paszek, P., Skowron, A., Suraj, Z.: Comparison of some classification algorithms based on deterministic and nondeterministic decision rules. In: Peters, J.F., Skowron, A., Słowiński, R., Lingras, P., Miao, D., Tsumoto, S. (eds.) Transactions on Rough Sets XII. LNCS, vol. 6190, pp. 90–105. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Delimata, P., Moshkov, M., Skowron, A., Suraj, Z.: Inhibitory rules in data analysis: A rough set approach. SCI, vol. 163 (2009)

    Google Scholar 

  7. Frank, A., Asuncion, A.: UCI machine learning repository (2010), http://archive.ics.uci.edu/ml

  8. Grzymala-Busse, J.: Lers - a data mining system. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 1347–1351. Springer, US (2005)

    Chapter  Google Scholar 

  9. Holte, R.: Very simple classification rules perform well on most commonly used datasets. Mach. Learn. 11(1), 63–90 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Marszał–Paszek, B., Paszek, P.: Minimal templates and knowledge discovery. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 411–416. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Michalski, R.: http://www.mli.gmu.edu/michalski/

  12. Moshkov, M., Skowron, A., Suraj, Z.: Maximal consistent extensions of information systems relative to their theories. Inf. Sci. 178(12), 2600–2620 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Nguyen, H.S.: Scalable classification method based on rough sets. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 433–440. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Paszek, P., Marszał-Paszek, B.: Nondeterministic decision rules in classification process. In: Herrero, P., Panetto, H., Meersman, R., Dillon, T. (eds.) OTM 2012 Workshops. LNCS, vol. 7567, pp. 485–494. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Data. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  16. Rissanen, J.: Modeling By Shortest Data Description. Automatica 14, 465–471 (1978)

    Article  MATH  Google Scholar 

  17. Simiński, R., Nowak-Brzezińska, A., Jach, T., Xięski, T.: Towards a practical approach to discover internal dependencies in rule-based knowledge bases. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS, vol. 6954, pp. 232–237. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Skowron, A., Suraj, Z.: Rough sets and concurrency. Bulletin of the Polish Academy of Sciences 41, 237–254 (1993)

    MATH  Google Scholar 

  19. Triantaphyllou, E., Felici, G.: Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques. Springer Science and Business Media (2006)

    Google Scholar 

  20. Tsumoto, S.: Modelling medical diagnostic rules based on rough sets. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 475–482. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Paszek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Paszek, P., Marszał-Paszek, B. (2014). Nondeterministic Decision Rules in Rule-Based Classifier. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures, and Structures. BDAS 2014. Communications in Computer and Information Science, vol 424. Springer, Cham. https://doi.org/10.1007/978-3-319-06932-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06932-6_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06931-9

  • Online ISBN: 978-3-319-06932-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics