Abstract
In the paper is discussed the truncated nondeterministic rules and their role in an evaluation of classification model. The nondeterministic rules are created as the result of shorting deterministic rules in accordance with the principle of minimum description length (MDL). As deterministic rules in database we treat the full objects description in a meaning of descriptors conjunction. The nondeterministic rules are calculated in polynomial time by using greedy strategy.
The classification model is composed in two steps process. In the first step deterministic and nondeterministic rules are constructed. Next these rules are used for classifier evaluation. The evaluation results are compared with classifiers only based on deterministic rules creating by different algorithms. The experiments shows that such nondeterministic rules could be treat as an extra knowledge about data. This knowledge is able to improve the classification quality. It should be pointed out that classification process requires tuning some of their parameters relative to analyzed data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Rosetta, http://www.lcb.uu.se/tools/rosetta/
Rough Set Exploration System, http://logic.mimuw.edu.pl/~rses/
Agrawal, R., Imieliński, T., Swami, A.: Mining associations rules between sets of items in massive databases. In: Buneman, P., Jajodia, S. (eds.) Proc. of the ACM-SIGMOD 1993 International Conference on Management of Data, Washington, D.C., pp. 207–216 (1993)
Bazan, J., Szczuka, M.S., Wojna, A., Wojnarski, M.: On the evolution of rough set exploration system. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 592–601. Springer, Heidelberg (2004)
Delimata, P., Marszał-Paszek, B., Moshkov, M., Paszek, P., Skowron, A., Suraj, Z.: Comparison of some classification algorithms based on deterministic and nondeterministic decision rules. In: Peters, J.F., Skowron, A., Słowiński, R., Lingras, P., Miao, D., Tsumoto, S. (eds.) Transactions on Rough Sets XII. LNCS, vol. 6190, pp. 90–105. Springer, Heidelberg (2010)
Delimata, P., Moshkov, M., Skowron, A., Suraj, Z.: Inhibitory rules in data analysis: A rough set approach. SCI, vol. 163 (2009)
Frank, A., Asuncion, A.: UCI machine learning repository (2010), http://archive.ics.uci.edu/ml
Grzymala-Busse, J.: Lers - a data mining system. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 1347–1351. Springer, US (2005)
Holte, R.: Very simple classification rules perform well on most commonly used datasets. Mach. Learn. 11(1), 63–90 (1993)
Marszał–Paszek, B., Paszek, P.: Minimal templates and knowledge discovery. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 411–416. Springer, Heidelberg (2007)
Michalski, R.: http://www.mli.gmu.edu/michalski/
Moshkov, M., Skowron, A., Suraj, Z.: Maximal consistent extensions of information systems relative to their theories. Inf. Sci. 178(12), 2600–2620 (2008)
Nguyen, H.S.: Scalable classification method based on rough sets. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 433–440. Springer, Heidelberg (2002)
Paszek, P., Marszał-Paszek, B.: Nondeterministic decision rules in classification process. In: Herrero, P., Panetto, H., Meersman, R., Dillon, T. (eds.) OTM 2012 Workshops. LNCS, vol. 7567, pp. 485–494. Springer, Heidelberg (2012)
Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Data. Kluwer Academic Publishers, Dordrecht (1991)
Rissanen, J.: Modeling By Shortest Data Description. Automatica 14, 465–471 (1978)
Simiński, R., Nowak-Brzezińska, A., Jach, T., Xięski, T.: Towards a practical approach to discover internal dependencies in rule-based knowledge bases. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS, vol. 6954, pp. 232–237. Springer, Heidelberg (2011)
Skowron, A., Suraj, Z.: Rough sets and concurrency. Bulletin of the Polish Academy of Sciences 41, 237–254 (1993)
Triantaphyllou, E., Felici, G.: Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques. Springer Science and Business Media (2006)
Tsumoto, S.: Modelling medical diagnostic rules based on rough sets. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 475–482. Springer, Heidelberg (1998)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Paszek, P., Marszał-Paszek, B. (2014). Nondeterministic Decision Rules in Rule-Based Classifier. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures, and Structures. BDAS 2014. Communications in Computer and Information Science, vol 424. Springer, Cham. https://doi.org/10.1007/978-3-319-06932-6_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-06932-6_18
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-06931-9
Online ISBN: 978-3-319-06932-6
eBook Packages: Computer ScienceComputer Science (R0)