Abstract
We present a modification of the dynamic programming algorithm. The aims of the paper are: (i) study of the coverage of decision rules, and (ii) study of the size of a directed acyclic graph (the number of nodes and edges) for a proposed algorithm. The paper contains experimental results with decision tables from UCI Machine Learning Repository and comparison with results for the dynamic programming algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alkhalid, A., Amin, T., Chikalov, I., Hussain, S., Moshkov, M., Zielosko, B.: Dagger: A tool for analysis and optimization of decision trees and rules. In: Computational Informatics, Social Factors and New Information Technologies: Hypermedia Perspectives and Avant-Garde Experiences in the Era of Communicability Expansion, pp. 29–39. Blue Herons (2011)
Alsolami, F., Chikalov, I., Moshkov, M., Zielosko, B.: Optimization of inhibitory decision rules relative to length. Studia Informatica 33(2A(105)), 395–406 (2012)
Amin, T., Chikalov, I., Moshkov, M., Zielosko, B.: Dynamic programming approach for partial decision rule optimization. Fundam. Inform. 119(3-4), 233–248 (2012)
Amin, T., Chikalov, I., Moshkov, M., Zielosko, B.: Dynamic programming approach to optimization of approximate decision rules. Inf. Sci. 221, 403–418 (2013)
An, A., Cercone, N.: Rule quality measures improve the accuracy of rule induction: An experimental approach. In: Raś, Z.W., Ohsuga, S. (eds.) ISMIS 2000. LNCS (LNAI), vol. 1932, pp. 119–129. Springer, Heidelberg (2000)
Asuncion, A., Newman, D.J.: UCI Machine Learning Repository (2007), http://www.ics.uci.edu/~mlearn/
Błaszczyński, J., Słowiński, R., Szeląg, M.: Sequential covering rule induction algorithm for variable consistency rough set approaches. Inf. Sci. 181(5), 987–1002 (2011)
Dembczyński, K., Kotłowski, W., Słowiński, R.: Ender: a statistical framework for boosting decision rules. Data Min. Knowl. Discov. 21(1), 52–90 (2010)
Moshkov, M., Piliszczuk, M., Zielosko, B.: Partial Covers, Reducts and Decision Rules in Rough Sets - Theory and Applications. SCI, vol. 145. Springer, Heidelberg (2008)
Moshkov, M., Zielosko, B.: Combinatorial Machine Learning - A Rough Set Approach. SCI, vol. 360. Springer, Heidelberg (2011)
Nguyen, H.S.: Approximate boolean reasoning: Foundations and applications in data mining. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V. LNCS, vol. 4100, pp. 334–506. Springer, Heidelberg (2006)
Pawlak, Z., Skowron, A.: Rough sets and boolean reasoning. Inf. Sci. 177(1), 41–73 (2007)
Sikora, M., Wróbel, Ł.: Data-driven adaptive selection of rule quality measures for improving rule induction and filtration algorithms. Int. J. General Systems 42(6), 594–613 (2013)
Zielosko, B.: Coverage of decision rules. In: Decision Support Systems, pp. 183–192, University of Silesia (2013)
Zielosko, B.: Coverage of exact decision rules. Studia Informatica 34(2A(111)), 251–262 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Zielosko, B. (2014). Optimization of Approximate Decision Rules Relative to Coverage. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures, and Structures. BDAS 2014. Communications in Computer and Information Science, vol 424. Springer, Cham. https://doi.org/10.1007/978-3-319-06932-6_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-06932-6_17
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-06931-9
Online ISBN: 978-3-319-06932-6
eBook Packages: Computer ScienceComputer Science (R0)