Abstract
This paper presents a new approach to solve the Software Project Scheduling Problem. This problem is NP-hard and consists in finding a worker-task schedule that minimizes cost and duration for the whole project, so that task precedence and resource constraints are satisfied. Such a problem is solved with an Ant Colony Optimization algorithm by using the Max–Min Ant System and the Hyper-Cube framework. We illustrate experimental results and compare with other techniques demonstrating the feasibility and robustness of the approach, while reaching competitive solutions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdallah, H., Emara, H.M., Dorrah, H.T., Bahgat, A.: Using ant colony optimization algorithm for solving project management problems. Expert Syst. Appl. 36(6), 10004–10015 (2009)
Alba, E., Chicano, F.: Software project management with gas. Inf. Sci. 177(11), 2380–2401 (2007) (in press)
Barreto, A., Barros, MdO, Werner, C.M.L.: Staffing a software project: a constraint satisfaction and optimization-based approach. Comput. Oper. Res. 35(10), 3073–3089 (2008)
Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization. Syst. Man Cybern. Part B Cybern. IEEE Trans. 34(2), 1161–1172 (2004)
Chang, C.K., yi Jiang, H., Di, Y., Zhu, D., Ge, Y.: Time-line based model for software project scheduling with genetic algorithms. Inf. Softw. Technol. 50(11), 1142–1154 (2008)
Chen, W., Zhang, J.: Ant colony optimization for software project scheduling and staffing with an event-based scheduler. Softw. Eng. IEEE Trans. 39(1), 1–17 (2013)
Crawford, B., Soto, R., Castro, C., Monfroy, E.: Extensible cp-based autonomous search. In: Proceedings of HCI International, vol. 173 of CCIS, pp. 561–565. Springer (2011)
Crawford, B., Soto, R., Johnson, F., Monfroy, E.: Ants can schedule software projects. In: Stephanidis, C. (ed.) HCI International 2013—Posters Extended Abstracts, volume 373 of Communications in Computer and Information Science, pp. 635–639. Springer, Berlin (2013)
Crawford, B., Soto, R., Monfroy, E., Palma, W., Castro, C., Paredes, F.: Parameter tuning of a choice-function based hyperheuristic using particle swarm optimization. Expert Syst. Appl. 40(5), 1690–1695 (2013)
Dorigo, M. Di Caro, G.: Ant colony optimization: a new meta-heuristic. In: Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on, vol. 2, p. 1477 (1999)
Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)
Dorigo, M., Stutzle, T.: Ant Colony Optimization. MIT Press, USA (2004)
Johnson, F., Crawford, B., Palma, W.: Hypercube framework for ACO applied to timetabling. In: IFIP AI, pp. 237–246 (2006)
Liao, T.W., Egbelu, P., Sarker, B., Leu, S.: Metaheuristics for project and construction management a state-of-the-art review. Autom. Constr. 20(5), 491–505 (2011)
Monfroy, E., Castro, C., Crawford, B., Soto, R., Paredes, F., Figueroa, C.: A reactive and hybrid constraint solver. J. Exp. Theor. Artif. Intell. 25(1), 1–22 (2013)
Ozdamar, L., Ulusoy, G.: A survey on the resource-constrained project scheduling problem. IIE Trans. 27(5), 574–586 (1995)
Stutzle, T., Hoos, H.H.: Maxmin ant system. Future Gener. Comput. Syst. 16(8), 889–914 (2000)
Xiao, J., Ao, X.T., Tang, Y.: Solving software project scheduling problems with ant colony optimization. Comput. Oper. Res. 40(1), 33–46 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Crawford, B., Soto, R., Johnson, F., Monfroy, E., Paredes, F. (2014). A New Approach to Solve the Software Project Scheduling Problem Based on Max–Min Ant System. In: Silhavy, R., Senkerik, R., Oplatkova, Z., Silhavy, P., Prokopova, Z. (eds) Modern Trends and Techniques in Computer Science. Advances in Intelligent Systems and Computing, vol 285. Springer, Cham. https://doi.org/10.1007/978-3-319-06740-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-06740-7_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-06739-1
Online ISBN: 978-3-319-06740-7
eBook Packages: EngineeringEngineering (R0)