Feasibility Study of Signal Similarity Measurements for Improving Morphological Evaluation of Human Brain with Images from Multi-Echo T2-Star Weighted MR Sequences | SpringerLink
Skip to main content

Feasibility Study of Signal Similarity Measurements for Improving Morphological Evaluation of Human Brain with Images from Multi-Echo T2-Star Weighted MR Sequences

  • Conference paper
Health Information Science (HIS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8423))

Included in the following conference series:

Abstract

Signal correlation measurement has been widely used for segmenting specific tissues, localizing abnormal regions and analyzing functional areas in dynamic imaging modalities. In this paper, we discussed the feasibility of similarity mappings derived from six signal coefficient measurements in improving morphological evaluation of human brain. These images are from a digital phantom and four normal volunteers scanned by multi-echo T2-star weighted MR sequences. Simulation studies have shown that similarity mappings from cross-correlation, normalized cross-correlation, mean square error and cubed sum coefficient are not helpful in distinguishing the reference region from its surrounding tissues. Clinical experiments were focused on similarity coefficient mapping (SCM) and improved SCM (iSCM). Final results have demonstrated comparative capacity of SCM and iSCM in improving image quality from quantitative metrics and visual analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chavhan, G.B., Babyn, P.S., Thomas, B., et al.: Principles, techniques, and applications of T2*-based MR imaging and its special applications. RadioGraphics 29(5), 1433–1449 (2009)

    Article  Google Scholar 

  2. Tardif, C.L., Bedell, B.J., Eskildsen, S.F., et al.: Quantitative magnetic resonance imaging of cortical multiple sclerosis pathology. Multiple sclerosis international (2012)

    Google Scholar 

  3. Mamisch, T.C., Hughes, T., Mosher, T.J., et al.: T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study. Skeletal Radiology 41(3), 287–292 (2012)

    Article  Google Scholar 

  4. Wang, H.Y., Hu, J., Xie, Y.Q., et al.: Feasibility of similarity coefficient map for improving morphological evaluation of T2* weighted MRI for renal cancer. Chinese Physics B 22(3), 8702 (2013)

    Google Scholar 

  5. Yu, S.D., Wu, S.B., Xie, Y.Q.: Automatic mapping extraction from multi-echo T2-star weighted magnetic resonance images for improving morphological evaluations in human brain. Comput. Math. Methods Med. 2013 (2013)

    Google Scholar 

  6. Lo, E., Rogowska, J., Bogorodzki, P., et al.: Temporal correlation analysis of penumbral dynamics in focal cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism 16(1), 60–68 (1996)

    Article  Google Scholar 

  7. Zhu, F., Rodriguez, G.D., Carpenter, T., et al.: Lesion Area Detection Using Source Image Correlation Coefficient for CT Perfusion Imaging. Journal of Biomedical and Health Informatics 17(5), 950–958 (2013)

    Article  Google Scholar 

  8. Rogowska, J., Preston Jr., K., Hunter, G.J., et al.: Applications of similarity mapping in dynamic MRI. IEEE Transactions on Medical Imaging 14(3), 480–486 (1995)

    Article  Google Scholar 

  9. Thireou, T., Kontaxakis, G., Strauss, L.G., et al.: Feasibility study of the use of similarity maps in the evaluation of oncological dynamic positron emission tomography images. Medical & Biological Engineering & Computing 43(1), 23–32 (2005)

    Article  Google Scholar 

  10. Haacke, E.M., Li, M., Juvvigunta, F.: Tissue similarity maps (TSMs): A new means of mapping vascular behavior and calculating relative blood volume in perfusion weighted imaging. Journal of Magnetic Resonance Imaging 31(4), 481–489 (2013)

    Article  Google Scholar 

  11. Brockow, K.: Contrast media hypersensitivity - scope of the problem. Toxicology 209(2), 189–192 (2005)

    Article  Google Scholar 

  12. Tepel, M., Van der Giet, M., Schwarzfeld, C., et al.: Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. The New England Journal of Medicine 343(3), 180–184 (2000)

    Article  Google Scholar 

  13. Collins, D.L., Zijdenbos, A.P., Kollokian, V., et al.: Design and construction of a realistic digital brain phantom. IEEE Transactions on Medical Imaging 17(3), 463–468 (1998)

    Article  Google Scholar 

  14. Haacke, E.M., Brown, R.W., Thompson, M.R., et al.: Magnetic resonance imaging: physical principles and sequence design. Wiley-Liss, New York (1999)

    Google Scholar 

  15. Coupe, P., Manjon, J.V., Gedamu, E., et al.: Robust Rician noise estimation for MR images. Medical Image Analysis 14(4), 483–493 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Yu, S., Cheng, X., Xie, Y. (2014). Feasibility Study of Signal Similarity Measurements for Improving Morphological Evaluation of Human Brain with Images from Multi-Echo T2-Star Weighted MR Sequences. In: Zhang, Y., Yao, G., He, J., Wang, L., Smalheiser, N.R., Yin, X. (eds) Health Information Science. HIS 2014. Lecture Notes in Computer Science, vol 8423. Springer, Cham. https://doi.org/10.1007/978-3-319-06269-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06269-3_26

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06268-6

  • Online ISBN: 978-3-319-06269-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics