Verification of Certifying Computations through AutoCorres and Simpl | SpringerLink
Skip to main content

Verification of Certifying Computations through AutoCorres and Simpl

  • Conference paper
NASA Formal Methods (NFM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8430))

Included in the following conference series:

Abstract

Certifying algorithms compute not only an output, but also a witness that certifies the correctness of the output for a particular input. A checker program uses this certificate to ascertain the correctness of the output. Recent work used the verification tools VCC and Isabelle to verify checker implementations and their mathematical background theory. The checkers verified stem from the widely-used algorithms library LEDA and are written in C. The drawback of this approach is the use of two different tools. The advantage is that it could be carried out with reasonable effort in 2011. In this article, we evaluate the feasibility of performing the entire verification within Isabelle. For this purpose, we consider checkers written in the imperative languages C and Simpl. We re-verify the checker for connectedness of graphs and present a verification of the LEDA checker for non-planarity of graphs. For the checkers written in C, we translate from C to Isabelle using the AutoCorres tool set and then reason in Isabelle. For the checkers written in Simpl, Isabelle is the only tool needed. We compare the new approach with the previous approach and discuss advantages and disadvantages. We conclude that the new approach provides higher trust guarantees and it is particularly promising for checkers that require domain-specific reasoning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice-Hall (1993)

    Google Scholar 

  2. Alkassar, E., Böhme, S., Mehlhorn, K., Rizkallah, C.: A framework for the verification of certifying computations. JAR (2013), doi:10.1007/s10817-013-9289-2

    Google Scholar 

  3. Back, R.J.R.: Correctness preserving program refinements: Proof theory and applications. Mathematical Centre tracts. Mathematisch centrum (1980)

    Google Scholar 

  4. de Berg, M., Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications. Springer (1997)

    Google Scholar 

  5. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development—Coq’Art: The Calculus of Inductive Constructions. Springer (2004)

    Google Scholar 

  6. Besson, F., Jensen, T., Pichardie, D., Turpin, T.: Certified result checking for polyhedral analysis of bytecode programs. In: Wirsing, M., Hofmann, M., Rauschmayer, A. (eds.) TGC 2010, LNCS, vol. 6084, pp. 253–267. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Blum, M., Kannan, S.: Designing programs that check their work. In: STOC, pp. 86–97 (1989)

    Google Scholar 

  8. Böhme, S., Leino, K.R.M., Wolff, B.: HOL-Boogie—An interactive prover for the Boogie program-verifier. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 150–166. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Bright, J.D., Sullivan, G.F., Masson, G.M.: A formally verified sorting certifier. IEEE Transactions on Computers 46(12), 1304–1312 (1997)

    Article  Google Scholar 

  10. Charguéraud, A.: Characteristic formulae for the verification of imperative programs. In: ICFP, pp. 418–430 (2011)

    Google Scholar 

  11. Cock, D., Klein, G., Sewell, T.: Secure microkernels, state monads and scalable refinement. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 167–182. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T., Schulte, W., Tobies, S.: VCC: A practical system for verifying concurrent C. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Dijkstra, E.W.: Notes on structured programming. Technological University Eindhoven Netherlands (1970)

    Google Scholar 

  14. Gordon, M.J., Milner, A.J., Wadsworth, C.P.: Edinburgh LCF: A Mechanised Logic of Computation. LNCS, vol. 78. Springer, Heidelberg (1979)

    Google Scholar 

  15. Greenaway, D., Andronick, J., Klein, G.: Bridging the gap: Automatic verified abstraction of C. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 99–115. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Greenaway, D., Lim, J., Andronick, J., Klein, G.: Don’t sweat the small stuff: Formal verification of c code without the pain. In: PLDI (2014) (to appear)

    Google Scholar 

  17. Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P., Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: seL4: Formal verification of an operating-system kernel. CACM 53(6), 107–115 (2010)

    Article  Google Scholar 

  18. Leroy, X.: Formal verification of a realistic compiler. CACM 52(7), 107–115 (2009)

    Article  Google Scholar 

  19. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms. Computer Science Review 5(2), 119–161 (2011)

    Article  Google Scholar 

  20. Mehlhorn, K., Näher, S.: From algorithms to working programs: On the use of program checking in LEDA. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 84–93. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  21. Mehlhorn, K., Näher, S.: The LEDA Platform for Combinatorial and Geometric Computing. Cambridge University Press (1999)

    Google Scholar 

  22. Mehta, F., Nipkow, T.: Proving pointer programs in higher-order logic. Information and Computation 199, 200–227 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL — A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

    Google Scholar 

  24. Noschinski, L.: A graph library for Isabelle (2013), http://www21.in.tum.de/~noschinl/documents/noschinski2013graphs.pdf (submitted)

  25. Schirmer, N.: Verification of sequential imperative programs in Isabelle/HOL. Ph.D. thesis, Technische Universität München (2006)

    Google Scholar 

  26. Sullivan, G.F., Masson, G.M.: Using certification trails to achieve software fault tolerance. In: FTCS, pp. 423–431 (1990)

    Google Scholar 

  27. Winwood, S., Klein, G., Sewell, T., Andronick, J., Cock, D., Norrish, M.: Mind the gap: A verification framework for low-level C. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 500–515. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  28. Wirth, N.: Program development by stepwise refinement. CACM 14(4), 221–227 (1971)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Noschinski, L., Rizkallah, C., Mehlhorn, K. (2014). Verification of Certifying Computations through AutoCorres and Simpl. In: Badger, J.M., Rozier, K.Y. (eds) NASA Formal Methods. NFM 2014. Lecture Notes in Computer Science, vol 8430. Springer, Cham. https://doi.org/10.1007/978-3-319-06200-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06200-6_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06199-3

  • Online ISBN: 978-3-319-06200-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics