A Synthesized Algorithm for Interactive Consistency | SpringerLink
Skip to main content

A Synthesized Algorithm for Interactive Consistency

  • Conference paper
NASA Formal Methods (NFM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8430))

Included in the following conference series:

Abstract

We revisit the interactive consistency problem introduced by Pease, Shostak and Lamport. We first show that their algorithm does not achieve interactive consistency if faults are transient, even if faults are non-malicious. We then present an algorithm that achieves interactive consistency in the presence of non-malicious, asymmetric and transient faults, but only under an additional guaranteed delayed ack assumption. We discovered our algorithm using an automated synthesis technique that is based on bounded model checking and QBF solving. Our synthesis technique is general and simple, and it is a promising approach for synthesizing distributed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 101–115. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. de Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N., Sorea, M., Tiwari, A.: SAL 2. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 496–500. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. JACM 32(2), 374–382 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gascon, A., Tiwari, A.: Webpage: Synthesis of fault-tolerant distributed algorithms (2013), http://www.csl.sri.com/users/tiwari/softwares/synth_distributed/

  5. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs. In: Proc. PLDI (2011)

    Google Scholar 

  6. Kulkarni, S.S., Arora, A., Chippada, A.: Polynomial time synthesis of byzantine agreement. In: 20th Symp. on Reliable Distributed Systems, SRDS (2001)

    Google Scholar 

  7. Lala, J.H.: A Byzantine resilient fault tolerant computer for nuclear power applications. In: Fault Tolerant Computing Symposium, pp. 338–343 (1986)

    Google Scholar 

  8. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

    Article  MATH  Google Scholar 

  9. Lincoln, P., Rushby, J.: Formal verification of an interactive consistency algorithm for the Draper FTP architecture under a hybrid fault model. In: Proc. 9th Conf. on Computer Assurance, COMPASS (1994)

    Google Scholar 

  10. Lonsing, F., Biere, A.: DepQBF: A Dependency-Aware QBF Solver. JSAT 7(2-3), 71–76 (2010)

    Google Scholar 

  11. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996)

    Google Scholar 

  12. Manna, Z., Wolper, P.: Synthesis of communicating processes from temporal logic specifications. ACM Trans. on Programming Languages and Systems 6, 68–93 (1984)

    Article  MATH  Google Scholar 

  13. Miner, P., Geser, A., Pike, L., Maddalon, J.: A Unified Fault-Tolerance Protocol. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT 2004. LNCS, vol. 3253, pp. 167–182. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. JACM 27(2), 228–234 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  15. The SAL intermediate language. Computer Science Laboratory, SRI International, Menlo Park, CA (2003), http://sal.csl.sri.com/

  16. Solar-Lezama, A., Rabbah, R., Bodík, R., Ebcioglu, K.: Programming by sketching for bit-streaming programs. In: PLDI (2005)

    Google Scholar 

  17. Solar-Lezama, A., Tancau, L., Bodík, R., Saraswat, V., Seshia, S.: Combinatorial Sketching for Finite Programs. In: ASPLOS (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Gascón, A., Tiwari, A. (2014). A Synthesized Algorithm for Interactive Consistency. In: Badger, J.M., Rozier, K.Y. (eds) NASA Formal Methods. NFM 2014. Lecture Notes in Computer Science, vol 8430. Springer, Cham. https://doi.org/10.1007/978-3-319-06200-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06200-6_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06199-3

  • Online ISBN: 978-3-319-06200-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics