Signature-Based Biometric Authentication | SpringerLink
Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 555))

Abstract

In a modern, civilized and advanced society, reliable authentication and authorization of individuals are becoming more essential tasks in several aspects of daily activities and as well as many different important applications such as in financial transactions, access control, travel and immigration, healthcare etc. In some situations, when individual equipment is required for confirmation of one’s identity to other groups of people in order to make use of services or to achieve access to physical places, it is always necessary to declare self-identity and to prove the claim. Traditional authentication methods, which are based on knowledge (password-based authentication) or the utility of a token (photo ID cards, magnetic strip cards and key-based authentication), are less reliable because of loss, forgetfulness and theft.

These issues direct substantial attention towards biometrics as an alternative method for person authentication and identification. The word ‘biometric’ has been derived from the Greek words “Bio-metriks”, “Bio” which means life and “metriks” which means measures. Therefore a biometric is the measurement and statistical analysis of unchanging biological characteristics. Biometrics evaluate a person’s unique physical or behavioural traits to authenticate their identity. As biometric identifiers are unique to persons, they are more reliable in verifying identity than token-based and knowledge-based methods. In the last few years, substantial efforts have been devoted to the development of biometric-based authentication systems. Biometrics provide an expected and successful solution to the authentication problem, as it offers the construction of systems that can identify individuals by the analysis of their physiological or behavioural characteristics [1]. In fact, the field of biometrics is the science of using digital technologies and the intention of biometric systems is to perform the recognition or authentication of people based on some biological characteristics that are intrinsically unique for each individual. The effectiveness of a biometric system is measured mainly by the distinguishing attributes that are used to verify the identity. A large number of biometric traits have been investigated and some of them are nowadays used in several applications. Common physical traits include fingerprints, ear, hand or palm geometry, vein, retina, iris and facial characteristics [2]. Behavioural traits include voice, signature, keystroke pattern and gait.

A biometric scheme can either verify or identify the authentication of an individual. In verification mode, it authenticates the person’s identity on the basis of his/her claimed identity. In identification mode, it establishes the person’s identity (among those enrolled in a database) without the subjects having to claim their identity [3]. Among all other biometric traits, signature verification occupies an important and a very special place in the field of biometrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boyer, K.W., Govindaraju, V., Ratha, N.K.: Introduction to the Special Issue on Recent Advances in Biometric Systems. IEEE Trans. Systems, Man, and Cybernetics, Part B 37(5), 1091–1095 (2007)

    Article  Google Scholar 

  2. Samal, A., Iyengar, P.A.: Automatic Recognition and Analysis of Human Faces and Facial Rxpressions: A Survey. Pattern Recognition 25(1), 65–77 (1992)

    Article  Google Scholar 

  3. Jain, A.K., Hong, L., Pankanti, S.: Biometric Identification. Communications of the ACM 43(2), 91–98 (2000)

    Article  Google Scholar 

  4. Zhang, D., Campbell, J.P., Maltoni, D., Bolle, R.M.: Special Issue on Biometric Systems. IEEE Trans. Systems, Man, and Cybernetics, Part C 35(3), 273–275 (2005)

    Article  Google Scholar 

  5. Wayman, J.L., Jain, A.K., Maltoni, D., Maio, D.: Biometric Systems: Technology, Design and Performance Evaluation. Springer (2005)

    Google Scholar 

  6. Jain, A.K., Bolle, R., Pankanti, S. (eds.): Biometrics: Personal Identification in Networked Society. Kluwer Academic Publishers (1999)

    Google Scholar 

  7. Klein, D.V.: Foiling the Cracker: A Survey of Improvements to Password Security. In: Proc. 2nd USENIX Workshop Security, pp. 5–14 (1990)

    Google Scholar 

  8. Li, S.Z., Jain, A.K.: Handbook of Face Recognition. Springer (2004)

    Google Scholar 

  9. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer (June 2003)

    Google Scholar 

  10. Jain, A.K., Ross, A., Pankanti, S.: Biometrics: a tool for information security. IEEE Transactions on Information Forensics and Security 1(2), 125–143 (2006)

    Article  Google Scholar 

  11. Sanchez-Reillo, R., Sanchez-Avila, C., Gonzales-Marcos, A.: Biometric Identification through Hand Geometry Measurements. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1168–1171 (2000)

    Article  Google Scholar 

  12. Daugman, J.: The Importance of being Random: Statistical Principles of Iris Recognition. Pattern Recognition 36(2), 279–291 (2003)

    Article  Google Scholar 

  13. Hill, R.: Retina Identification. In: Jain, A.K., Bolle, R.M., Pankanti, S. (eds.) BIOMETRICS: Personal Identification in Networked Society, ch. 4, 2nd Printing. Kluwer Academic Publishers (1999)

    Google Scholar 

  14. Campbell, J.P.: Speaker Recognition: A Tutorial. Proc. IEEE 85(9), 1437–1462 (1997)

    Article  Google Scholar 

  15. Monrose, F., Rubin, A.: Authentication via Keystroke Dynamics. In: Proc. 4th ACM Conference on Computer and Communications Security, pp. 48–56 (1997)

    Google Scholar 

  16. Joussen, A.M.: Vascular plasticity - the role of the Angiopoietins in Modulating Ocular Angiogenesis. Graefe’s Archive for Clinical and Experimental Ophthalmology 239(12), 972–975 (2001)

    Article  Google Scholar 

  17. Isao, N., Shouta, K., Yoshio, I., Shigang, L.: DWT Domain On-Line Signature Verification, pp. 183–196. Tottori University, Japan

    Google Scholar 

  18. Plamondon, R.: A kinematic Theory of Rapid Human Movements: Part III: Kinetic Outcomes. Biol. Cybern. (January 1997)

    Google Scholar 

  19. Nalwa, V.S.: Automatic on-line Signature Verification. Proc. IEEE 85(2), 213–239 (1997)

    Article  Google Scholar 

  20. Brault, J.J., Plamondon, R.: A Complexity Measure of Handwritten Curves: Modelling of Dynamic Signature Forgery. IEEE Transactions on Systems, Man, and Cybernetics 23(2), 400–413 (1993)

    Article  Google Scholar 

  21. Plamondon, R.: The Design of an On-line Signature Verification System: from Theory to Practice. International Journal on Pattern Recognition and Artificial Intelligence 8(3), 795–811 (1994)

    Article  Google Scholar 

  22. Jain, A.K., Ross, A.: Multi-biometric Systems. Communications of the ACM 47(1), 35–40 (2004)

    Article  Google Scholar 

  23. Fairhurst, M.C.: Signature Verification Revisited: Promoting Practical Exploitation of Biometric Technology. Electronics and Communication Engineering Journal 9(6), 273–280 (1997)

    Article  Google Scholar 

  24. Ismail, M.A., Gad, S.: Off-line Arabic Signature Recognition and Verification. Pattern Recognition 33(10), 1727–1740 (2000)

    Article  Google Scholar 

  25. Chaudhuri, B.B., Pal, U.: An OCR System to Read two Indian Language Scripts: Bangla and Devnagari (Hindi). In: Proceedings of 4th ICDAR, pp. 1011–1015 (1997)

    Google Scholar 

  26. Bromme, A.: A Classification of Biometric Signatures. In: International Conference on Multimedia and Expo, ICME, pp. 17–20 (2003)

    Google Scholar 

  27. Nagasundara, K.B., Manjunath, S., Guru, D.S.: Multimodal Biometric System based on Hand Geometry, Palmprint and Signature. In: 5th ACM Computer Conference: Intelligent & Scalable System Technologies, Article No. 4 (2012)

    Google Scholar 

  28. Ko, T.: Multimodal Biometric Identification for Large User population Using Fingerprint, Face and Iris Recognition. In: Proceedings of the 34th Applied Imagery and pattern recognition Workshop, pp. 218–223 (2005)

    Google Scholar 

  29. Ross, A., Jain, A.K.: Multimodal Biometrics: An Overview. In: Proceedings of the 12th European Signal Processing Conference (EUSIPCO), pp. 1221–1224 (2004)

    Google Scholar 

  30. Ross, A., Nandakumar, K., Jain, A.K.: Handbook of Multibiometrics, vol. 6. Springer (2006)

    Google Scholar 

  31. Plamondon, R.: The Handwritten Signature as a Biometric Identifier: Psychophysical Model and System Design. In: European Convention on Security and Detection, May 16-18 (1995)

    Google Scholar 

  32. Plamondon, R.: A Kinematic Theory of Rapid Human Movements: Part I: Movement Representation and generation. Biological Cybernetics 72(4), 295–307 (1995)

    Article  MATH  Google Scholar 

  33. Plamondon, R., Djioua, M.: A Multi-Level Representation Paradigm for Handwriting Stroke Generation. Human Movement Science 25(4-5), 586–607 (2006)

    Article  Google Scholar 

  34. Congedo, G., Dimauro, G., Impedovo, S., Pirlo, G.: A New Methodology for the Measurement of Local Stability in Dynamical Signatures. In: 4th International Workshop on Frontiers in Handwriting Recognition, pp. 135–144 (1994)

    Google Scholar 

  35. Impedovo, D., Pirlo, G., Sarcinella, L., Stasolla, E., Trullo, C.A.: Analysis of Stability in Static Signatures using Cosine Similarity. In: International Conference on Frontiers in Handwriting Recognition, pp. 231–235 (2012)

    Google Scholar 

  36. Zimmerman, T.G., Russell, G.F., Heilper, A., Smith, B.A., Hu, J., Markman, D., Graham, J.E., Drews, C.: Retail Applications of Signature Verification. In: Proceedings of SPIE, vol. 5404, pp. 206–214 (2004)

    Google Scholar 

  37. Plamondon, R., Lorette, G.: Automatic Signature Verification and Writer Identification Verification the State of Art. Pattern Recognition 22(2), 107–131 (1989)

    Article  Google Scholar 

  38. Srihari, S.N., Leedham, G.: A Survey of Computer Method in Forensic Document Examination. In: 11th Conf. of the Intl. Graphonomics Society (2003)

    Google Scholar 

  39. http://en.wikipedia.org/wiki/Biometrics

  40. Ammar, M., Yoshida, Y., Fukumura, T.: A New Effective Approach for Off-line Verification of Signatures by using Pressure Features. In: 8th Int. Conf. on Pattern Recognition (1986)

    Google Scholar 

  41. Leclerc, F., Plamondon, P.R.: Automatic Signature Verification: The State of the Art, 1989-1993. International Journal of Pattern Recognition and Artificial Intelligence 8(3), 643–660 (1994)

    Article  Google Scholar 

  42. Coetzer, J., Herbst, B., Preez, J.D.: Off-line Signature Verification using the Discrete Radon Transform and a Hidden Markov Model. EURASIP Journal on Applied Signal Processing 4, 559–571 (2004)

    Article  Google Scholar 

  43. Nguyen, V., Blumenstein, M., Muthukkumarasamy, V., Leedham, G.: Off- line Signature Verification using Enhanced Modified Direction Features in Conjunction with Neural Classifiers and Support Vector Machines. In: International Conference on Document Analysis and Recognition, pp. 734–738 (2007)

    Google Scholar 

  44. Justino, E.J.R., Bortolozzi, F., Sabourin, R.: A Comparison of SVM and HMM Classifiers in the Off-line Signature Verification. Pattern Recognition Letters 2005 26(9), 1377–1385 (2005)

    Article  Google Scholar 

  45. Hanmandlu, M., Yusof, M.H.M., Madasu, V.K.: Off-line Signature Verification and Forgery Detection using Fuzzy Modelling. Pattern Recognition Letters 38(3), 341–356 (2005)

    Article  MATH  Google Scholar 

  46. Weiping, H., Xiufen, Y., Kejun, W.: A Survey of Off-line Signature Verification. In: Proc. International Conference on Intelligent Mechatronics and Automation, pp. 536–541 (2004)

    Google Scholar 

  47. Ferrer, M., Alonso, J., Travieso, C.: Off-line Geometric Parameters for Automatic Signature Verification using Fixed-point Arithmetic. Pattern Analysis and Machine Intelligence 27(6), 993–997 (2005)

    Article  Google Scholar 

  48. Huang, K., Yan, H.: Off-line Signature Verification using Structural Feature Correspondence. Pattern Recognition 35(11), 2467–2477 (2002)

    Article  MATH  Google Scholar 

  49. Rabasse, C., Guest, R.M., Fairhurst, M.C.: A Method for the Synthesis of Dynamic Biometric Signature Data. In: Ninth International Conference on Document Analysis and Recognition, pp. 168–172 (2007)

    Google Scholar 

  50. Dit, Y.Y., Hong, C., Yimin, X., Susan, G., Ramanujan, K., Takashi, M., Gerhard, R.: SVC 2004: First International Signature Verification Competition. In: Proceedings of the International Conference on Biometric Authentication, Hong Kong, July 15-17 (2004)

    Google Scholar 

  51. Pascual, C.V., Hurtado, A.S., Martinez, E.M., Gaspar, J.M.P.: A New Proposal for Score Normalization in Biometric Signature Recognition Based on Client Threshold Prediction. In: International Conference on Data Mining, pp. 1128–1133 (2012)

    Google Scholar 

  52. Shashi Kumar, D.R., Ravi Kumar, R., Raja, K.B., Chhotaray, R.K., Pattanaik, S.: Biometric Security System Based on Signature Verification Using Neural Networks, pp. 580–583 (2010)

    Google Scholar 

  53. Maiorana, E., Campisi, P., Neri, A.: Biometric Signature Authentication using Radon Transform-based Watermarking Techniques. In: Biometrics Symposium, pp. 1–6 (2007)

    Google Scholar 

  54. Ratha, N.K., Connell, J.H., Bolle, R.: Secure Data Hiding in Wavelet Compressed Fingerprint Images. In: ACM Multimedia 2000 Workshops, pp. 127–130 (2000)

    Google Scholar 

  55. Maiorana, E., Campisi, P., Neri, A.: Bioconvolving: Cancelable Templates for a Multi-Biometrics Signature Recognition System. In: International Systems Conference on Digital Object Identifier, pp. 495–500 (2011)

    Google Scholar 

  56. Maiorana, E., Campisi, P., Ortega-Garcia, J., Neri, A.: Cancelable Biometrics for HMM-based Signature Recognition. In: International Conference on Biometrics, Theory, Applications and Systems, pp. 1–6 (2008)

    Google Scholar 

  57. Mhatre, Maniroja: Offline Signature Verification Based on Statistical Features. In: International Conference and Workshop on Emerging Trends in Technology, Mumbai, India, pp. 59–62

    Google Scholar 

  58. Maiorana, E., Campisi, P., Fierrez, J., Garcia, J.O., Neri, A.: Cancelable Templates for Sequence-based Biometrics with Application to On-line Signature Recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans 40(3), 525–537 (2010)

    Google Scholar 

  59. Pal, S., Pal, U., Blumenstein, M.: Hindi and English Off-line Signature Identification and Verification. In: International Conference on Advances in Computing, pp. 905–910 (2012)

    Google Scholar 

  60. Pal, S., Alaei, A., Pal, U., Blumenstein, M.: ‘ Multi-Script Off-line Signature Identification. In: International Conference on Hybrid Intelligent Systems, pp. 236–240 (2012)

    Google Scholar 

  61. Pal, S., Alaei, A., Pal, U., Blumenstein, M.: Off-line Signature Verification based on Foreground and Background information. In: International Conference on Digital Image Computing: Techniques and Applications, pp. 672–677 (2011)

    Google Scholar 

  62. Pal, S., Pal, U., Blumenstein, M.: Off-line English and Chinese Signature Identification Using Foreground and Background Features. In: IJCNN Special Session on Machine Learning for Computer Vision at IEEE World Congress on Computational Intelligence, pp. 1–7 (2012)

    Google Scholar 

  63. Pal, S., Pal, U., Blumenstein, M.: A Two-Stage Approach for English and Hindi Off-line Signature Verification. In: Petrosino, A., Maddalena, L., Pala, P. (eds.) ICIAP 2013. LNCS, vol. 8158, pp. 140–148. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  64. Pal, S., Pal, U., Blumenstein, M.: Multi-script Off-line Signature Verification: A Two Stage Approach. In: International Workshop on Automated Forensic Handwriting Analysis, AFHA 2013, pp. 31–35 (2013)

    Google Scholar 

  65. Vargas, F., Ferrer, M., Travieso, C.M., Alonso, J.: Offline handwritten signature GPDS-960 Corpus. In: 9th ICDAR, pp. 764–768. IEEE Computer Society (2007)

    Google Scholar 

  66. Ferrer, M.A., Alonso, J.B., Travieso, C.M.: Offline Geometric Parameters for Automatic Signature Verification using Fixed-point Arithmetic. Trans. on IEEE PAMI 27, 993–997 (2005)

    Article  Google Scholar 

  67. Ortega-Garcia, J., Fierrez-Aguilar, J., Simon, D., Gonzalez, J., Faundez-Zanuy, M., Espinosa, V., Satue, A., Hernaez, I., Igarza, J.-J., Vivaracho, C., Escudero, D., Moro, Q.-I.: MCYT Daseline Corpus: A Bimodal Biometric Database. IEEE Proceedings of Visual Image Signal Processing 150(6) (2003)

    Google Scholar 

  68. Fiérrez-Aguilar, J., Alonso-Hermira, N., Moreno-Marquez, G., Ortega-Garcia, J.: An Off-line Signature Verification System based on Fusion of Local and Global Information. In: Maltoni, D., Jain, A.K. (eds.) BioAW 2004. LNCS, vol. 3087, pp. 295–306. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  69. Impedovo, D., Pirlo, G.: Automatic signature verification: The state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 38(5), 609–635 (2008)

    Article  Google Scholar 

  70. Plamondon, R., Lorette, G.: Automatic Signature Verification and Writer Identification-the State of the Art. Pattern Recognition 22(2), 107–131 (1989)

    Article  Google Scholar 

  71. Ortega-Garcia, J., Gonzalez-Rodriguez, J., Simon-Zorita, A., Cruz-Llanas, S.: From Biometrics Technology to Applications Regarding Face, Voice, Signature and Fingerprint Recognition Systems. In: Biometric Solutions for Authentication (2002)

    Google Scholar 

  72. Papamarkos, N., Baltzakis, H.: Off-line Signature Verification using Multiple-Neural Network Classification Structures. In: 13th International Conference on Digital Signal Processing Proceedings, pp. 727–730 (1997)

    Google Scholar 

  73. Klement, V., Steinke, K., Naske, R.: The Application of Image Processing and Pattern Recognition Techniques to the Forensic Analysis of Handwriting. In: International Conference on Security through Science Engineering (1980)

    Google Scholar 

  74. Congedo, G., Dimauro, G., Forte, A.M., Impedovo, S., Pirlo, G.: Selecting Reference Signatures for On-line Signature Verification. In: International Conference on Image Analysis and Processing, pp. 521–526 (1995)

    Google Scholar 

  75. Lee, J., Yoon, H.S., Soh, J., Chun, B.T., Chung, Y.K.: Using Geometric Extrema for Segment-to-segment Characteristics Comparison in Online Signature Verification. Pattern Recognition 37(1), 93–103 (2004)

    Article  MATH  Google Scholar 

  76. Plamondon, R., Lorette, G.: Automatic Signature Verification and Writer Identification-the State of the Art. Pattern Recognition 22(2), 7–13 (1989)

    Article  Google Scholar 

  77. Inamdar, V.S., Rege, P.P., Arya, M.S.: Offline Handwritten Signature based Blind Biometric Watermarking and Authentication Technique using Biorthogonal Wavelet Transform. International Journal of Computer Applications 11(1), 0975–8887 (2010)

    Google Scholar 

  78. Leszczyska, J.P.: On-line Signature Verification using Dynamic Time Warping with Positional Coordinates. In: Proc. SPIE, vol. 6347, pp. 634724-1–634724-08 (2006)

    Google Scholar 

  79. Huang, K., Yan, H.: Off-line Signature Verification based on Geometric Feature Extraction and Neural Network Classification. Pattern Recognition 30(1), 9–171 (1997)

    Article  Google Scholar 

  80. Garcia-Salicetti, S., Dorizzi, B.: On using the Viterbi Path Along with HMM Likelihood Information for Online Signature Verification. IEEE Trans. Syst., Man, Cybern. B 37(5), 1237–1247 (2007)

    Article  Google Scholar 

  81. Kholmatov, A., Yanikoglu, B.: Identity Authentication using Improved Online Signature Verification Method. Pattern Recognit. Letters 26, 2400–2408 (2005)

    Article  Google Scholar 

  82. Impedovo, D., Pirlo, G., Refice, M.: Handwritten Signature and Speech: Preliminary Experiments on Multiple Source and Classifiers for Personal Identity Verification. In: IWCF, pp. 181-191 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srikanta Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pal, S., Pal, U., Blumenstein, M. (2014). Signature-Based Biometric Authentication. In: Muda, A., Choo, YH., Abraham, A., N. Srihari, S. (eds) Computational Intelligence in Digital Forensics: Forensic Investigation and Applications. Studies in Computational Intelligence, vol 555. Springer, Cham. https://doi.org/10.1007/978-3-319-05885-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05885-6_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05884-9

  • Online ISBN: 978-3-319-05885-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics