Integrating Epidemiological Modeling and Surveillance Data Feeds: A Kalman Filter Based Approach | SpringerLink
Skip to main content

Integrating Epidemiological Modeling and Surveillance Data Feeds: A Kalman Filter Based Approach

  • Conference paper
Social Computing, Behavioral-Cultural Modeling and Prediction (SBP 2014)

Abstract

Infectious disease spread is difficult to accurately measure and model. Even for well-studied pathogens, uncertainties remain regarding dynamics of mixing behavior and how to balance simulation-generated estimates with empirical data. While Markov Chain Monte Carlo approaches sample posteriors given empirical data, health applications of such methods have not considered dynamics associated with model error. We present here an Extended Kalman Filter (EKF) approach for recurrent simulation regrounding as empirical data arrives throughout outbreaks. The approach simultaneously considers empirical data accuracy, growing simulation error between measurements, and supports estimation of changing model parameters. We evaluate our approach using a two-level system, with “ground truth” generated by an agent-based model simulating epidemics over empirical microcontact networks, and noisy measurements fed into an EKF corrected aggregate model. We find that the EKF solution improves outbreak peak estimation and can compensate for inaccuracies in model structure and parameter estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tuite, A., Greer, A., Whelan, M., Winter, A., Lee, B., Yan, P., Wu, J., Moghadas, S., Buckeridge, D., Pourbohloul, B., et al.: Estimated epidemiologic parameters and morbidity associated with pandemic H1N1 influenza. Canadian Medical Association Journal 182(2), 131–136 (2010)

    Article  Google Scholar 

  2. Keeling, M.: The implications of network structure for epidemic dynamics. Theoretical Population Biology 67(1), 1–8 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Hashemian, M., Qian, W., Stanley, K.G., Osgood, N.D.: Temporal aggregation impacts on epidemio- logical simulations employing microcontact data. BMC Medical Informatics and Decision Making 12(1), 132 (2012)

    Article  Google Scholar 

  4. Machens, A., Gesualdo, F., Rizzo, C., Tozzi, A.E., Barrat, A., Cattuto, C.: An infectious disease model on empirical networks of human contact: bridging the gap between dynamic network data and contact matrices. BMC Infectious Diseases 13(1), 185 (2013)

    Article  Google Scholar 

  5. Mbalawata, I.S., Särkkä, S., Haario, H.: Parameter estimation in stochastic differential equations with markov chain monte carlo and non-linear kalman filtering. Computational Statistics, 1–29 (2012)

    Google Scholar 

  6. Dorigatti, I., Cauchemez, S., Pugliese, A., Ferguson, N.M.: A new approach to characterising infectious disease transmission dynamics from sentinel surveillance: Application to the italian 2009–2010 a H1N1 influenza pandemic. Epidemics 4(1), 9–21 (2012)

    Article  Google Scholar 

  7. Coelho, F.C., Codeço, C.T., Gomes, M.G.M.: A bayesian framework for parameter estimation in dynam- ical models. PloS One 6(5), e19616 (2011)

    Google Scholar 

  8. Osgood, N., Liu, J.: Bayesian parameter estimation of system dynamics models using markov chain monte carlo methods: An informal introduction. In: The 30th International Conference of the System Dynamics Society, p. 19. Curran Associates, Inc, New York (2013)

    Google Scholar 

  9. Tian, Y., Osgood, N.: Comparison between individual-based and aggregate models in the context of tuberculosis transmission. In: The 29th International Conference of the System Dynamics Society, Washington, D.C, p. 29 (2011)

    Google Scholar 

  10. Wang, F.Y.: Toward a revolution in transportation operations: Ai for complex systems. IEEE Intelligent Systems 23(6), 8–13 (2008)

    Article  MATH  Google Scholar 

  11. Rahmandad, H., Sterman, J.: Heterogeneity and network structure in the dynamics of diffusion: Comparing agent-based and differential equation models. Management Science 54(5), 998–1014 (2008)

    Article  Google Scholar 

  12. Obeidat, M.: Bayesian estimation of time series of counts. Presentation at the 41st Annual Meeting of the Statistical Society of Canada, Edmonton, May 26-29 (2013)

    Google Scholar 

  13. Chiogna, M., Gaetan, C.: Hierarchical space-time modelling of epidemic dynamics: an application to measles outbreaks. Statistical Methods and Applications 13(1), 55–71 (2004)

    MATH  MathSciNet  Google Scholar 

  14. Cazelles, B., Chau, N.: Using the kalman filter and dynamic models to assess the changing hiv/aids epidemic. Mathematical Biosciences 140(2), 131–154 (1997)

    Article  MATH  Google Scholar 

  15. Chiogna, M., Gaetan, C.: Dynamic generalized linear models with application to environmental epidemiology. Journal of the Royal Statistical Society: Series C (Applied Statistics) 51(4), 453–468 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Eagle, N., Pentland, A.S., Lazer, D.: Inferring friendship network structure by using mobile phone data. Proceedings of the National Academy of Sciences 106(36), 15274–15278 (2009)

    Article  Google Scholar 

  17. Salathé, M., Kazandjieva, M., Lee, J.W., Levis, P., Feldman, M.W., Jones, J.H.: A high-resolution human contact network for infectious disease transmission. Proceedings of the National Academy of Sciences 107(51), 22020–22025 (2010)

    Article  Google Scholar 

  18. Hashemian, M., Stanley, K., Osgood, N.: Leveraging H1N1 infection transmission modeling with proximity sensor microdata. BMC Medical Informatics and Decision Making 12(1), 35 (2012)

    Article  Google Scholar 

  19. Funk, S., Salathé, M., Jansen, V.A.: Modelling the influence of human behaviour on the spread of infectious diseases: a review. Journal of The Royal Society Interface 7(50), 1247–1256 (2010)

    Article  Google Scholar 

  20. Gelb, A.: Applied optimal estimation. MIT Press (1974)

    Google Scholar 

  21. Osgood, N.: Using traditional and agent based toolset for system dynamics: Present tradeoffs and future evolution. System Dynamics (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Qian, W., Osgood, N.D., Stanley, K.G. (2014). Integrating Epidemiological Modeling and Surveillance Data Feeds: A Kalman Filter Based Approach. In: Kennedy, W.G., Agarwal, N., Yang, S.J. (eds) Social Computing, Behavioral-Cultural Modeling and Prediction. SBP 2014. Lecture Notes in Computer Science, vol 8393. Springer, Cham. https://doi.org/10.1007/978-3-319-05579-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05579-4_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05578-7

  • Online ISBN: 978-3-319-05579-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics