Automatic Estimation of Flow in Intelligent Tutoring Systems Using Neural Networks | SpringerLink
Skip to main content

Automatic Estimation of Flow in Intelligent Tutoring Systems Using Neural Networks

  • Chapter
  • First Online:
Recent Advances on Hybrid Approaches for Designing Intelligent Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 547))

  • 1410 Accesses

Abstract

Flow is a mental state where a person is fully focused on an activity, and is enjoying performing it. Mihaly Csikszentmihalyi, who coined the concept, defines flow in terms of the skill and challenge levels of the activity as perceived by the person performing such activity. In this chapter, we propose the use of neural networks to predict if a student, after completing a computer-programming problem, is in a state of flow or not. To do so, we performed an experiment where we apply a very basic computer-programming tutorial to 21 students. We registered in a database how much time it took the students to finish the test, how many keystrokes they needed to press before achieving the goals of each exercise, how much time it took the student to start trying to solve the problem, the time between each keystroke, and how many attempts the student needed before successfully completing each exercise. Using these variables, we built a neural network that was capable of predicting if a student was in flow or not after the completion of each problem in the tutorial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Astleitner, H., Koller, M.: An aptitude-treatment-interaction-approach on motivation and student’s self-regulated multimedia-based learning. Interact. Edu. Multimedia 13, 11–23 (2006)

    Google Scholar 

  2. Carletta, J.: Assessing agreement on classification tasks: the kappa statistic. Comput. Linguist. 22(2), 249–254 (1996)

    Google Scholar 

  3. Csikszentmihalyi, M.: Finding Flow: The Psychology of Engagement with Everyday Life. Basic Books, New York (1997)

    Google Scholar 

  4. Csikszentmihalyi, M.: Flow: The Psychology of Optimal Experience. LidovéNoviny, Praha (1990)

    Google Scholar 

  5. Corbett, A., John, A.: Student modeling and mastery learning in a computer-based programming tutor. In: Intelligent Tutoring Systems. Springer, Berlin (1992)

    Google Scholar 

  6. D’Mello, S., et al.: AutoTutor detects and responds to learners affective and cognitive states. In: Workshop on Emotional and Cognitive Issues at the International Conference on Intelligent Tutoring Systems (2008)

    Google Scholar 

  7. Endler, A., Günter, R., Martin, B.: Towards motivation-based adaptation of difficulty in e-learning programs. Australas. J. Educ. Technol. 28(7), 1119–1135 (2012)

    Google Scholar 

  8. Keeley, J., Zayac, R., Correia, C.: Curvilinear relationships between statistics anxiety and performance among undergraduate students: evidence for optimal anxiety. Stat. Educ. Res. J. 7(1), 4–15 (2008)

    Google Scholar 

  9. Kim, J., Frick, W.: Changes in student motivation during online learning. J. Educ. Comput. Res. 44(1), 1–23 (2011)

    Article  Google Scholar 

  10. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI 14(2), 1137 (1995)

    Google Scholar 

  11. Lopez, J., Charles, S. (eds.): The Oxford Handbook of Positive Psychology. Oxford University Press, Oxford (2011)

    Google Scholar 

  12. Martens, L., Gulikers, J., Bastiaens, T.: The impact of intrinsic motivation on e-learning in authentic computer tasks. J. Comput. Assist. Learn. 20, 368–376 (2004)

    Article  Google Scholar 

  13. Mödritscher, F., Garcia, M., Gütl, C.: The past, the present and the future of adaptive e-Learning. In: Proceedings of the International Conference on Interactive Computer Aided Learning (ICL2004) (2004)

    Google Scholar 

  14. Nkambou, R., Riichiro, M., Jacqueline, B. (eds.): Advances in intelligent tutoring systems, vol. 308. Springer, Berlin (2010)

    Google Scholar 

  15. Padayachee, I.: Intelligent Tutoring Systems: Architecture and Characteristics. University of Natal, Information Systems & Technology, School of Accounting & Finance, Durban (2002)

    Google Scholar 

  16. Schacter, L., Daniel, G., Daniel, W.: Psychology (Loose Leaf). Macmillan Higher Education, NY (2010)

    Google Scholar 

  17. Schiefele, U., Krapp, A., Winteler, A.: Interest as a predictor of academic achievement: a meta-analysis of research. In: Renninger, K.A., Hidi, S., Krapp, A. (eds.), The Role of Interest in Learning and Development. (pp. 183–212). Erlbaum, Hillsdale, NJ (1992)

    Google Scholar 

  18. Sepulveda, R., Castillo, O., Melin, P., Montiel, O.: An efficient computational method to implement type-2 fuzzy logic in control applications. Adv. Soft Comput. 41, 45–52 (2007)

    Article  Google Scholar 

  19. Sepulveda, R., Castillo, O., Melin, P., Rodriguez-Diaz, A., Montiel, O.: Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic. Inf. Sci. 177(10), 2023–2048 (2007)

    Article  Google Scholar 

  20. Shaffer, O.: Crafting Fun User Experiences: A Method to Facilitate Flow. Human Factors International. Online White paper. http://www.humanfactors.com/FunExperiences.asp (2013)

  21. Urias, J., Hidalgo, D., Melin, P., Castillo, O.: A method for response integration in modular neural networks with type-2 fuzzy logic for biometric systems. Adv. Soft Comput. 41, 5–15 (2007)

    Article  Google Scholar 

  22. Woolf, B., Burleson, W., Arroyo, I.: Emotional intelligence for computer tutors. In: Workshop on Modeling and Scaffolding Affective Experiences to Impact Learning at 13th International Conference on Artificial Intelligence in Education (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Garcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hernandez, A., Garcia, M., Mancilla, A. (2014). Automatic Estimation of Flow in Intelligent Tutoring Systems Using Neural Networks. In: Castillo, O., Melin, P., Pedrycz, W., Kacprzyk, J. (eds) Recent Advances on Hybrid Approaches for Designing Intelligent Systems. Studies in Computational Intelligence, vol 547. Springer, Cham. https://doi.org/10.1007/978-3-319-05170-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05170-3_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05169-7

  • Online ISBN: 978-3-319-05170-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics