A New Number System Using Alternate Fibonacci Numbers as the Positional Weights with Some Engineering Applications | SpringerLink
Skip to main content

A New Number System Using Alternate Fibonacci Numbers as the Positional Weights with Some Engineering Applications

  • Conference paper
Distributed Computing and Internet Technology (ICDCIT 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8337))

Abstract

Fibonaccian number system (FNS) that uses {0,1} as the digit set with Fibonacci numbers as the positional weights, has many interesting properties which can be exploited for various applications. We propose here a new number system, termed as the Tri-digit Fibonaccian Number System (TFNS), with alternate Fibonacci numbers as the positional weights for the various digits in the representation. We show that TFNS provides asymmetric distribution of the three digits (0, 1 and 2) in representing numbers with a pair of consecutive 2’s never appearing in a valid codeword. These properties can conveniently be utilized for typical engineering applications, e.g., message encoding for low-energy communication systems and variable length encoding with self-delimiting code.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahlbach, C., Usatine, J., Frougny, C., Pippenger, N.: Efficient Algorithms for Zeckendorf Arithmetic. The Fibonacci Quarterly 51(3), 249–255 (2013)

    MATH  MathSciNet  Google Scholar 

  2. Apostolico, A., Fraenkel, A.: Robust transmission of unbounded strings using fibonacci representations. IEEE Transactions on Information Theory 33, 238–245 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  3. Fenwick, P.: Zeckendorf Integer Arithmetic. The Fibonacci Quarterly 41, 405–413 (2003)

    MATH  MathSciNet  Google Scholar 

  4. Fraenkel, A.S.: Systems of Numeration. Amer. Math. Monthly 92(2), 105–114 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fraenkel, A., Klein, S.: Combinatorial Algorithms on Words, vol. F12, pp. 169–183 (1985)

    Google Scholar 

  6. Ghosh, R.N., Sinha, K., Sinha, B.P., Datta, D.: TSS: an energy efficient communication scheme for low power wireless networks. In: Proc. 27th IEEE Intl. Performance Computing and Communications Conf (IPCCC), USA, pp. 85–92 (December 2008)

    Google Scholar 

  7. St. John, P.H.: On the Asymtotic Proportions of zeros and Ones in Fibonacci Sequences. The Fibonacci Quarterly 22(2), 144–145 (1984)

    MathSciNet  Google Scholar 

  8. Kautz, W.: Fibonacci codes for synchronization control. IEEE Transactions on Information Theory 11, 284–292 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  9. Knuth, D.E.: The Art of Computer Programming, 3rd edn., vol. 1. Pearson Education (1997)

    Google Scholar 

  10. Mutyam, M.: Preventing crosstalk delay using fibonacci representation. In: IEEE Intl. Conf. on VLSI Design, pp. 685–688 (2004)

    Google Scholar 

  11. Sinha, K., Sinha, B.P., Datta, D.: CNS: a new energy efficient transmission scheme for wireless sensor networks. Wireless Networks 16(8), 2087–2104 (2010)

    Article  Google Scholar 

  12. Sinha, K., Sinha, B.P., Datta, D.: An energy-efficient communication scheme for wireless networks: a redundant radix-based approach. IEEE Transactions on Wireless Communications 10(2), 550–559 (2011)

    Article  Google Scholar 

  13. Zeckendorf, E.: Reprsentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas. Bull. Soc. Roy. Sci. Liege 41, 179–182 (1972)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Sinha, K., Ghosh, R., Sinha, B.P. (2014). A New Number System Using Alternate Fibonacci Numbers as the Positional Weights with Some Engineering Applications. In: Natarajan, R. (eds) Distributed Computing and Internet Technology. ICDCIT 2014. Lecture Notes in Computer Science, vol 8337. Springer, Cham. https://doi.org/10.1007/978-3-319-04483-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04483-5_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04482-8

  • Online ISBN: 978-3-319-04483-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics