Gene Selection Using Multi-objective Genetic Algorithm Integrating Cellular Automata and Rough Set Theory | SpringerLink
Skip to main content

Gene Selection Using Multi-objective Genetic Algorithm Integrating Cellular Automata and Rough Set Theory

  • Conference paper
Swarm, Evolutionary, and Memetic Computing (SEMCCO 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8298))

Included in the following conference series:

Abstract

Feature selection is one of the most key problems in the field of machine learning and data mining. It can be done in mainly two different ways, namely, filter approach and wrapper approach. Filter approach is independent of underlying classifier logic and relatively less costly than the wrapper approach which is classifier dependent. Many researchers have applied Genetic algorithm (GA) as wrapper approach for feature selection. In the paper, a novel feature selection method is proposed based on the multi-objective genetic algorithm which is applied on population generated by non-linear uniform hybrid cellular automata. The fitness functions are defined one using set lower bound approximation of rough set theory and the other using Kullbak-Leibler divergence method. A comparative study between proposed method and some leading feature selection methods are given using some popular microarray cancer dataset to demonstrate the effectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy. The Journal of Machine Learning Research 5, 1205–1224 (2004)

    MATH  Google Scholar 

  2. Hall, M.A.: Correlation-based feature selection for machine learning. Diss., The University of Waikato (1999)

    Google Scholar 

  3. Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Machine Learning 3(2), 95–99 (1988)

    Article  Google Scholar 

  4. Deb, K., et al.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  MathSciNet  Google Scholar 

  5. Schwefel, P.H.: Evolution and optimum seeking: the sixth generation. John Wiley & Sons, Inc. (1993)

    Google Scholar 

  6. Coello Coello, A.C., Lamont, B.G., Van Veldhuisen, D.A.: Evolutionary algorithms for solving multi-objective problems. Springer (2007)

    Google Scholar 

  7. Multi-objective Evolutionary Algorithms: A Survey of the State-of-the-art. Swarm and Evolutionary Computation 1(1), 32–49 (2011)

    Google Scholar 

  8. Zhou, A., Suganthan, P.N., Zhang, Q.: Decomposition Based Multiobjective Evolutionary Algorithm with an Ensemble of Neighborhood Sizes. IEEE Trans. on Evolutionary Computation 16(3), 442–446 (2012)

    Article  Google Scholar 

  9. Knowles, J.D., Corne, D.W.: M-PAES: A memetic algorithm for multi-objective optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation, vol. 1. IEEE (2000)

    Google Scholar 

  10. Zitzler, E., Lothar, T.: Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)

    Article  Google Scholar 

  11. Van Veldhuisen, D.A., Lamont, G.B.: Multi-objective evolutionary algorithm research: A history and analysis. Technical Report TR-98-03, Department of Electrical and Computer Engineering, Graduate School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB, Ohio (1998)

    Google Scholar 

  12. Mumford, C.L.: Simple population replacement strategies for a steady-state multi-objective evolutionary algorithm. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 1389–1400. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Deb, K.: Multi-objective optimization. In: Multi-objective Optimization Using Evolutionary Algorithms, pp. 13–46 (2001)

    Google Scholar 

  14. Kullback, S., Leibler, R.A.: On Information and Sufficiency. Annals of Mathematical Statistics 22(1), 79–86 (1951), doi:10.1214/aoms/1177729694

    Google Scholar 

  15. Chaconas, G., Lavoie, B.D., Watson, M.A.: DNA transposition: jumping gene machine, some assembly required. Current Biology: CB 6(7), 817 (1996)

    Article  Google Scholar 

  16. Von Neumann, J.: Theory of self-reproducing automata (1966)

    Google Scholar 

  17. Pawlak, Z.: Rough set approach to knowledge-based decision support. European Journal of Operational Research 99(1), 48–57 (1997)

    Article  MATH  Google Scholar 

  18. Turing, A.: Universal Turing machine

    Google Scholar 

  19. Cover, T., et al.: Elements of information theory. Telecommunications, Wiley series (1991)

    Google Scholar 

  20. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1) (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Pati, S.K., Das, A.K., Ghosh, A. (2013). Gene Selection Using Multi-objective Genetic Algorithm Integrating Cellular Automata and Rough Set Theory. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Dash, S.S. (eds) Swarm, Evolutionary, and Memetic Computing. SEMCCO 2013. Lecture Notes in Computer Science, vol 8298. Springer, Cham. https://doi.org/10.1007/978-3-319-03756-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03756-1_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03755-4

  • Online ISBN: 978-3-319-03756-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics