Abstract
We present an open-source system, Fiberfox, for generating synthetic diffusion-weighted datasets. Fiberfox enables (1) definition of artificial white matter fibers, (2) signal generation from those fibers using multi-compartment modeling, and (3) simulation of magnetic resonance artifacts including Gibbs ringing, N∕2 ghosting and susceptibility distortions. With a comparative hardware phantom study we show that the synthetic datasets closely resemble real acquisitions. To demonstrate the relevance of Fiberfox for current research questions, we reveal the adverse effects of anisotropic voxels on the outcome of 11 different fiber tractography algorithms. Fiberfox is openly available and may find application in the validation and further development of diffusion-weighted image processing techniques such as super-resolution, denoising, tractography, diffusion modeling or artifact correction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using dt-mri data. Magn. Reson. Med. 44, 625–632 (2000)
Bihan, D.L., Poupon, C., Amadon, A., Lethimonnier, F.: Artifacts and pitfalls in diffusion MRI. Magn. Reson. Imaging 24, 478–488 (2006)
Close, T.G., Tournier, J.D., Calamante, F., Johnston, L.A., Mareels, I., Connelly, A.: A software tool to generate simulated white matter structures for the assessment of fibre-tracking algorithms. Neuroimage 47, 1288–1300 (2009)
Fritzsche, K., Neher, P., Reicht, I., van Bruggen, T., Goch, C., Reisert, M., Nolden, M., Zelzer, S., Meinzer, H.P., Stieltjes, B.: Mitk diffusion imaging. Method Inform. Med. 51(5), 441–448 (2012)
Ince, D., Hatton, L., Graham-Cumming, J.: The case for open computer programs. Nature 482, 485–488 (2012)
Jannin, P., Krupinski, E., Warfield, S.: Validation in medical image processing. IEEE Trans. Med. Imaging 25(11), 1405–1409 (2006)
Jones, D.K., Basser, P.J.: Squashing peanuts and smashing pumpkins: how noise distorts diffusion-weighted MR data. Magn. Reson. Med. 52, 979–993 (2004)
Moussavi-Biugui, A., Stieltjes, B., Fritzsche, K., Semmler, W., Laun, F.B.: Novel spherical phantoms for Q-ball imaging under in vivo conditions. Magn. Reson. Med. 65, 190–194 (2011)
Panagiotaki, E., Schneider, T., Siow, B., Hall, M.G., Lythgoe, M.F., Alexander, D.C.: Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison. Neuroimage 59, 2241–2254 (2012)
Pujol, S., Kikinis, R., Golby, A., Gerig, G., Styner, M., Wells, W., Westin, C., Gouttard, S.: DTI tractography for neurosurgical planning: a grand challenge. In: MICCAI, Toronto (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Neher, P.F., Laun, F.B., Stieltjes, B., Maier-Hein, K.H. (2014). Fiberfox: An Extensible System for Generating Realistic White Matter Software Phantoms. In: Schultz, T., Nedjati-Gilani, G., Venkataraman, A., O'Donnell, L., Panagiotaki, E. (eds) Computational Diffusion MRI and Brain Connectivity. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-02475-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-02475-2_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-02474-5
Online ISBN: 978-3-319-02475-2
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)