Abstract
The property of quasi-linearity (that is translativity and homogeneity) of sequence transformations is studied in details. A necessary and sufficient condition for translativity is given. Such transformations are related to extrapolation processes whose properties are discussed. Consequences of homogeneity are studied as well as the connection with fixed point methods. Finally the construction of new sequence transformations is evoked.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
M. D. Benchiboun, Etude de certaines généralisations du procédé d’Aitken et comparaison de procédés d’ accélération de la convergence Thèse de 3 ème cycle, Université de Lille 1, 1987.
P. Barrucand, Private communication, March 1985.
C. Brezinski, Accélération des suites à convergence logarithmique, C. R. Acad. Sci., Paris, 273 A (1971), 727–730.
C. Brezinksi, A general extrapolation algorithm, Numer. Math. 35 (1980), 175–181.
C. Brezinski, Composite sequence transformations, Numer. Math. 46 (1985), 311–321.
C. Brezinski, A new approach to convergence acceleration methods, in “Nonlinear numerical methods and rational approximation”, A. Cuyt ed. Reidel, Dordrecht, 1988.
B. Germain-Bonne, “Transformations de suites, RAIRO R1 (1973), 84p–90.
T. Havie, Generalized Neville type extrapolation schemes, BIT 19 (1979), 204–213.
R. Pennacchi, Le trasformazioni rationali di una successione, Calcolo 5 (1968), 37–50.
D. Shanks, Non-linear transformations of divergent and slowly convergent sequences, J. Math, and Phys. 34 (1955), 1–42.
D. A. Smith and W. F. Ford, Acceleration of linear and logarithmic convergence, SIAM. J. Numer. Anal. 16 (1979), 223–240.
G. Valiron, Théorie des Fonctions, Masson, Paris, 1955.
J. Wimp, Sequence Transformations and Their Applications, Academic Press, New-York, 1981.
P. Wynn, On a device for Computing the e (S) transformation, MTAC 10 (1956), 91–96.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1988 Springer Basel AG
About this chapter
Cite this chapter
Brezinski, C. (1988). Quasi-Linear Extrapolation Processes. In: Agarwal, R.P., Chow, Y.M., Wilson, S.J. (eds) Numerical Mathematics Singapore 1988. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d’Analyse numérique, vol 86. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-6303-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-0348-6303-2_5
Publisher Name: Birkhäuser, Basel
Print ISBN: 978-3-7643-2255-7
Online ISBN: 978-3-0348-6303-2
eBook Packages: Springer Book Archive