Adaptivity and Self-organisation in Organic Computing Systems | SpringerLink
Skip to main content

Part of the book series: Autonomic Systems ((ASYS,volume 1))

Abstract

Organic Computing (OC) and other research initiatives like Autonomic Computing or Proactive Computing have developed the vision of systems possessing life-like properties: they self-organise, adapt to their dynamically changing environments, and establish other so-called self-x properties, like self-healing, self-configuration, self-optimisation, etc. What we are searching for in OC are methodologies and concepts for systems that allow to cope with increasingly complex networked application systems by introduction of self-x properties and at the same time guarantee a trustworthy and adaptive response to externally provided system objectives and control actions. Therefore, in OC we talk about controlled self-organisation.

Although the terms self-organisation and adaptivity have been discussed for years, we miss a clear definition of self-organisation in most publications, which have a technically motivated background.

In this article, we briefly summarise the state of the art and suggest a characterisation of (controlled) self-organisation and adaptivity that is motivated by the main objectives of the OC initiative. We present a system classification of robust, adaptable, and adaptive systems and define a degree of autonomy to be able to quantify how autonomously a system is working. The degree of autonomy distinguishes and measures external control which is exerted directly by the user (no autonomy) from internal control of a system which might be fully controlled by an Observer/Controller architecture that is part of the system (full autonomy). The quantitative degree of autonomy provides the basis for characterising the notion of controlled self-organisation. Furthermore, we discuss several alternatives for the design of organic systems.

© 2010 Association for Computing Machinery (ACM), Inc. Reprinted, with permission, from: Schmeck, H. et al. “Adaptivity and Self-organisation in Organic Computing Systems,” ACM Transactions on Autonomous and Adaptive Systems (TAAS), Vol. 5:3, doi:10.1145/1837909.1837911.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Benjaafar, S., Ramakrishnan, R.: Modeling, measurement, and evaluation of sequencing flexibility in manufacturing systems. Int. J. Prod. Res. 34, 1195–1220 (1996)

    Article  MATH  Google Scholar 

  2. Branke, J., Mnif, M., Müller-Schloer, C., Prothmann, H., Richter, U., Rochner, F., Schmeck, H.: Organic Computing – Addressing complexity by controlled self-organization. In: Margaria, T., Philippou, A., Steffen, B. (eds.) Proceedings of the 2nd International Symposium on Leveraging Applications of Formal Methods, Verification and Validation (ISoLA 2006), Paphos, Cyprus, November 2006, pp. 200–206 (2006)

    Google Scholar 

  3. Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Network robustness and fragility: Percolation on random graphs. Phys. Rev. Lett. 85(25), 5468–5471 (2000)

    Article  Google Scholar 

  4. Compton, K.: Flexibility measurement of domain-specific reconfigurable hardware. In: Proceedings of the 2004 ACM/SIGDA 12th International Symposium on Field Programmable Gate Arrays (FPGA 2004), pp. 155–161. ACM, New York (2004)

    Chapter  Google Scholar 

  5. De Wolf, T., Holvoet, T.: Emergence versus self-organisation: Different concepts but promising when combined. In: Brueckner, S., di Marzo Serugendo, G., Karageorgos, A., Nagpal, R. (eds.) Engineering Self-Organising Systems, Methodologies and Applications. LNCS, vol. 3464, pp. 1–15. Springer, Berlin (2005)

    Chapter  Google Scholar 

  6. De Wolf, T., Samaey, G., Holvoet, T., Roose, D.: Decentralized autonomic computing: Analysing self-organising emergent behavior using advanced numerical methods. In: Proceedings of the Second International Conference on Autonomic Computing (ICAC 2005), pp. 52–63 (2005)

    Chapter  Google Scholar 

  7. DFG Priority Program 1183 Organic Computing. Website. http://www.organic-computing.de/SPP (2005). Visited June 2007

  8. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)

    Article  MATH  Google Scholar 

  9. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  10. Eden, A.H., Mens, T.: Measuring software flexibility. IEE Proc., Softw. Eng. 153(3), 113–125 (2006)

    Article  Google Scholar 

  11. Gershenson, C., Heylighen, F.: When can we call a system self-organizing? In: Banzhaf, W., Christaller, T., Dittrich, P., Kim, J.T., Ziegler, J. (eds.) Proceedings of the 7th European Conference on Advances in Artificial Life (ECAL 2003), Dortmund, Germany. LNCS, vol. 2801, pp. 606–614. Springer, Berlin (2003)

    Google Scholar 

  12. Hassanzadeh, P., Maier-Speredelozzi, V.: Dynamic flexibility metrics for capability and capacity. Int. J. Flex. Manuf. Syst. 19(3), 195–216 (2007)

    Article  MATH  Google Scholar 

  13. Hestermeyer, T., Oberschelp, O., Giese, H.: Structured information processing for self-optimizing mechatronic systems. In: Araújo, H., Vieira, A., Braz, J., Encarnação, B., Carvalho, M. (eds.) Proceedings of the 1st International Conference on Informatics in Control, Automation and Robotics (ICINCO 2004), August 2004, pp. 230–237. IEEE Comput. Soc., Los Alamitos (2004)

    Google Scholar 

  14. Heylighen, F.: The science of self-organization and adaptivity. In: The Encyclopedia of Life Support Systems, pp. 253–280 (1999)

    Google Scholar 

  15. Heylighen, F., Joslyn, C.: Cybernetics and second-order cybernetics. In: Meyers, R.A. (ed.) Encyclopedia of Physical Science & Technology, 3rd edn., vol. 4, pp. 155–170. Academic Press, New York (2001)

    Google Scholar 

  16. Jalote, P.: Fault Tolerance in Distributed Systems. Prentice Hall, New York (1994)

    Google Scholar 

  17. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Comput. 1, 41–50 (2003)

    Google Scholar 

  18. Knuth, D.E.: The Art of Computer Programming – Sorting and Searching, 2nd edn., vol. 3. Addison-Wesley/Longman, Amsterdam (1998)

    Google Scholar 

  19. Lucas, C.: Self-organizing Systems (sos) faq. http://www.calresco.org/sos/sosfaq.htm, July 2006. Frequently asked questions version 2.99, visited June 2007

  20. Mnif, M., Müller-Schloer, C.: Quantitative emergence. In: Proceedings of the 2006 IEEE Mountain Workshop on Adaptive and Learning Systems (IEEE SMCals 2006), pp. 78–84 (2006)

    Chapter  Google Scholar 

  21. Mnif, M., Richter, U., Branke, J., Schmeck, H., Müller-Schloer, C.: Measurement and control of self-organised behaviour in robot swarms. In: Lukowicz, P., Thiele, L., Tröster, G. (eds.) Proceedings of the 20th International Conference on Architecture of Computing Systems (ARCS 2007). Lecture Notes in Computer Science, vol. 4415, pp. 209–223. Springer, Berlin (2007)

    Chapter  Google Scholar 

  22. Mühl, G., Werner, M., Jaeger, M.A., Herrmann, K., Parzyjegla, H.: On the definitions of self-managing and self-organizing systems. In: Braun, T., Carle, G., Stiller, B. (eds.) Proceedings of the KiVS 2007 Workshop: Selbstorganisierende, Adaptive, Kontextsensitive verteilte Systeme (SAKS 2007), pp. 291–301. VDE Verlag, Bern (2007)

    Google Scholar 

  23. Müller-Schloer, C., Sick, B.: Emergence in Organic Computing systems: Discussion of a controversial concept. In: Yang, L.T., Jin, H., Ma, J., Ungerer, T. (eds.) Proceedings of the 3rd International Conference on Autonomic and Trusted Computing (ATC 2006). LNCS, vol. 4158, pp. 1–16. Springer, Berlin (2006)

    Google Scholar 

  24. Nimis, J., Lockemann, P.C.: Robust multi-agent systems: The transactional conversation approach. In: Barley, M., Massacci, F., Mouratidis, H., Scerri, P. (eds.) 1st International Workshop “Safety and Security in MultiAgent Systems” (SASEMAS 2004). AAMAS, New York (2004)

    Google Scholar 

  25. Oberschelp, O., Hestermeyer, T., Kleinjohann, B., Kleinjohann, L.: Design of self-optimizing agent-based controllers. In: Urban, C. (ed.) Proceedings of the 3rd International Workshop on Agent Based Simulation, Passau, Germany, April 2002. SCS European Publishing House

    Google Scholar 

  26. Parunak, H.V.D., Brueckner, S.: Entropy and self-organization in multi-agent systems. In: Müller, J.P., Andre, E., Sen, S., Frasson, C. (eds.) Proceedings of the 5th International Conference on Autonomous Agents, Montreal, Canada, pp. 124–130. ACM, New York (2001)

    Chapter  Google Scholar 

  27. Polani, D.: Measuring self-organization via observers. In: Banzhaf, W., Christaller, T., Dittrich, P., Kim, J.T., Ziegler, J. (eds.) Proceedings of the 7th European Conference on Advances in Artificial Life (ECAL 2003), Dortmund, Germany. LNCS, vol. 2801, pp. 667–675. Springer, Berlin (2003)

    Google Scholar 

  28. Prothmann, H., Rochner, F., Tomforde, S., Branke, J., Müller-Schloer, C., Schmeck, H.: Organic control of traffic lights. In: Rong, C., Jaatun, M.G., Sandnes, F.E., Yang, L.T., Ma, J. (eds.) Proceedings of the 5th International Conference on Autonomic and Trusted Computing (ATC-08). LNCS, vol. 5060, pp. 219–233. Springer, Berlin (2008)

    Google Scholar 

  29. Ribock, O., Richter, U., Schmeck, H.: Using organic computing to control bunching effects. In: Brinkschulte, U., Ungerer, T., Hochberger, C., Spallek, R.G. (eds.) Proceedings of the 21th International Conference on Architecture of Computing Systems (ARCS 2008). LNCS, vol. 4934, pp. 232–244. Springer, Berlin (2008)

    Google Scholar 

  30. Richter, U., Mnif, M., Branke, J., Müller-Schloer, C., Schmeck, H.: Towards a generic observer/controller architecture for Organic Computing. In: Hochberger, C., Liskowsky, R. (eds.) INFORMATIK 2006 – Informatik für Menschen! Lecture Notes in Informatics (LNI), vol. P-93, pp. 112–119. Köllen Verlag, Bonn (2006)

    Google Scholar 

  31. Rochner, F., Prothmann, H., Branke, J., Müller-Schloer, C., Schmeck, H.: An organic architecture for traffic light controllers. In: Hochberger, C., Liskowsky, R. (eds.) INFORMATIK 2006 – Informatik für Menschen! Lecture Notes in Informatics (LNI), vol. P-93, pp. 120–127. Köllen Verlag, Bonn (2006)

    Google Scholar 

  32. Schmeck, H.: Organic Computing – A new vision for distributed embedded systems. In: Proceedings of the 8th IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC 2005), pp. 201–203. IEEE Comput. Soc., Los Alamitos (2005)

    Chapter  Google Scholar 

  33. Scholl, A.: Robuste Planung und Optimierung – Grundlagen, Konzepte und Methoden, Experimentelle Untersuchungen. Physica-Verlag, Heidelberg (2001)

    Google Scholar 

  34. Shalizi, C.R., Shalizi, K.L.: Quantifying self-organization in cyclic cellular automata (2005). arXiv:nlin/0507067

  35. Shalizi, C.R., Shalizi, K.L., Haslinger, R.: Quantifying self-organization with optimal predictors. Phys. Rev. Lett. 93(11), 1–4 (2004)

    Article  Google Scholar 

  36. Shuiabi, E., Thomson, V., Bhuiyan, N.: Entropy as a measure of operational flexibility. Eur. J. Oper. Res. 165(3), 696–707 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Slotine, J.-J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, New York (1990)

    Google Scholar 

  38. Sterritt, R.: Autonomic Computing. Innov. Syst. Softw. Eng. 1(1), 79–88 (2005)

    Article  Google Scholar 

  39. Taguchi, G.: Taguchi on Robust Technology Development – Bringing Quality Engineering Upstream. Am. Soc. Mechanical (1993)

    Google Scholar 

  40. Tennenhouse, D.: Proactive computing. Commun. ACM 43, 43–50 (2000)

    Article  Google Scholar 

  41. Weyns, D., Parunak, H.V.D., Michel, F., Holvoet, T., Ferber, J.: Environments for multiagent systems state-of-the-art and research challenges. In: Environments for Multi-Agent Systems, First International Workshop, E4MAS 2004, Revised Selected Papers. Lecture Notes in Computer Science, vol. 3374, pp. 1–47. Springer, Berlin (2005)

    Google Scholar 

  42. Wright, W.A., Smith, R.E., Danek, M., Greenway, P.: A measure of emergence in an adapting, multi-agent context. In: Meyer, J., Berthoz, A., Floreano, D., Roitblat, H., Wilson, S. (eds.) Proceedings of the 6th International Conference on the Simulation of Adaptive Behaviour (SAB 2000), pp. 20–27. ISAB Press (2000)

    Google Scholar 

  43. Wright, W.A., Smith, R.E., Danek, M., Greenway, P.: A generalisable measure of self-organisation and emergence. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) Proceedings of the International Conference on Artificial Neural Networks (ICANN 2001), Vienna, Austria, August 2001. LNCS, vol. 2130, pp. 857–864. Springer, Berlin (2001)

    Google Scholar 

  44. Zadeh, L.A.: On the definition of adaptivity. Proc. IEEE 51(3), 469–470 (1963)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Müller-Schloer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this chapter

Cite this chapter

Schmeck, H., Müller-Schloer, C., Çakar, E., Mnif, M., Richter, U. (2011). Adaptivity and Self-organisation in Organic Computing Systems. In: Müller-Schloer, C., Schmeck, H., Ungerer, T. (eds) Organic Computing — A Paradigm Shift for Complex Systems. Autonomic Systems, vol 1. Springer, Basel. https://doi.org/10.1007/978-3-0348-0130-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0130-0_1

  • Publisher Name: Springer, Basel

  • Print ISBN: 978-3-0348-0129-4

  • Online ISBN: 978-3-0348-0130-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics