ICPR 2024 Competition on Resource-Limited Infrared Small Target Detection Challenge: Methods and Results | SpringerLink
Skip to main content

ICPR 2024 Competition on Resource-Limited Infrared Small Target Detection Challenge: Methods and Results

  • Conference paper
  • First Online:
Pattern Recognition. Competitions (ICPR 2024)

Abstract

In this paper, we briefly summarize the first competition on resource-limited infrared small target detection (namely, LimitIRSTD). This competition has two tracks, including weakly-supervised infrared small target detection (Track 1) and lightweight infrared small target detection (Track 2). 46 and 60 teams successfully registered and took part in Tracks 1 and Track 2, respectively. The top-performing methods and their results in each track are described with details. This competition inspires the community to explore the tough problems in the application of infrared small target detection, and ultimately promote the deployment of this technology under limited resource.

B. Li, X. Ying, R. Li, Y. Liu, Y. Shi, M. Li, X. Zhang, M. Hu, C. Wu, Y. Zhang, H. Wei, D. Tang, J. Zhao, L. Jin, C. Xiao, Q. Ling, Z. Lin, W. Sheng—The ICPR-2024 LimitIRSTD challenge organizers and share the equal contribution, while the other authors participated in this challenge.

ICPR 2024 webpage: https://icpr2024.org/.

Challenge webpage: https://limitirstd.github.io/.

Leaderboard Track1: https://bohrium.dp.tech/competitions/8821868197?tab=introduce.

Leaderboard Track2: https://bohrium.dp.tech/competitions/9012970343?tab=introduce.

BasicIRSTD toolbox: https://github.com/XinyiYing/BasicIRSTD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 18589
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/XinyiYing/WideIRSTD-Dataset.

References

  1. Berman, M., Triki, A.R., Blaschko, M.B.: The lovász-softmax loss: a tractable surrogate for the optimization of the intersection-over-union measure in neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4413–4421 (2018)

    Google Scholar 

  2. Beyer, L., Zhai, X., Royer, A., Markeeva, L., Anil, R., Kolesnikov, A.: Knowledge distillation: a good teacher is patient and consistent. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10925–10934 (2022)

    Google Scholar 

  3. Bochkovskiy, A.: YOLOv4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  4. Chen, W.T., Vong, Y.J., Kuo, S.Y., Ma, S., Wang, J.: RobustSAM: segment anything robustly on degraded images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4081–4091, June 2024

    Google Scholar 

  5. Dai, Y., Li, X., Zhou, F., Qian, Y., Chen, Y., Yang, J.: One-stage cascade refinement networks for infrared small target detection. IEEE Trans. Geosci. Remote Sens. 61, 1–17 (2023)

    Google Scholar 

  6. Dinh, B.D., Nguyen, T.T., Tran, T.T., Pham, V.T.: 1m parameters are enough? A lightweight CNN-based model for medical image segmentation. In: 2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pp. 1279–1284. IEEE (2023)

    Google Scholar 

  7. Ghiasi, G., et al.: Simple copy-paste is a strong data augmentation method for instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2918–2928 (2021)

    Google Scholar 

  8. Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., Wilson, A.G.: Averaging weights leads to wider optima and better generalization. arXiv preprint arXiv:1803.05407 (2018)

  9. Jiang, N., et al.: Anti-UAV: a large-scale benchmark for vision-based UAV tracking. IEEE Trans. Multimedia 25, 486–500 (2021)

    Article  Google Scholar 

  10. Kingma, D.P.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  11. Kou, R., et al.: MCGC: a multi-scale chain growth clustering algorithm for generating infrared small target mask under single-point supervision. IEEE Trans. Geosci. Remote Sens. (2024)

    Google Scholar 

  12. Li, B., et al.: Mixed-precision network quantization for infrared small target segmentation. IEEE Trans. Geosci. Remote Sens. (2024)

    Google Scholar 

  13. Li, B., et al.: Monte Carlo linear clustering with single-point supervision is enough for infrared small target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1009–1019, October 2023

    Google Scholar 

  14. Li, B., et al.: Dense nested attention network for infrared small target detection. IEEE Trans. Image Process. 32, 1745–1758 (2022)

    Article  Google Scholar 

  15. Li, R., et al.: Direction-coded temporal U-shape module for multiframe infrared small target detection. IEEE Trans. Neural Netw. Learn. Syst. (2023)

    Google Scholar 

  16. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  17. Lin, Z., et al.: Light-weight infrared small target detection combining cross-scale feature fusion with bottleneck attention module. J. Infrared Millim. Waves 41(6), 1102–1112 (2022)

    Google Scholar 

  18. Liu, T., Yang, J., Li, B., Wang, Y., An, W.: Infrared small target detection via nonconvex tensor tucker decomposition with factor prior. IEEE Trans. Geosci. Remote Sens. (2023)

    Google Scholar 

  19. Liu, T., et al.: Nonconvex tensor low-rank approximation for infrared small target detection. IEEE Trans. Geosci. Remote Sens. 60, 1–18 (2021)

    Google Scholar 

  20. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8

    Chapter  Google Scholar 

  21. Qin, Y., Bruzzone, L., Gao, C., Li, B.: Infrared small target detection based on facet kernel and random walker. IEEE Trans. Geosci. Remote Sens. 57(9), 7104–7118 (2019)

    Article  Google Scholar 

  22. Roy, A.G., Navab, N., Wachinger, C.: Concurrent spatial and channel ‘squeeze & excitation’ in fully convolutional networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018, Part I. LNCS, vol. 11070, pp. 421–429. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_48

    Chapter  Google Scholar 

  23. Sun, H., Bai, J., Yang, F., Bai, X.: Receptive-field and direction induced attention network for infrared dim small target detection with a large-scale dataset irdst. IEEE Trans. Geosci. Remote Sens. 61, 1–13 (2023)

    Article  Google Scholar 

  24. Wang, H., Zhou, L., Wang, L.: Miss detection vs. false alarm: adversarial learning for small object segmentation in infrared images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8509–8518 (2019)

    Google Scholar 

  25. Wu, J., et al.: Single-point supervised high-resolution dynamic network for infrared small target detection. arXiv preprint arXiv:2408.01976 (2024)

  26. Wu, T., et al.: MTU-Net: multilevel TransUNet for space-based infrared tiny ship detection. IEEE Trans. Geosci. Remote Sens. 61, 1–15 (2023)

    Google Scholar 

  27. Wu, X., Hong, D., Chanussot, J.: UIU-Net: U-Net in U-Net for infrared small object detection. IEEE Trans. Image Process. 32, 364–376 (2022)

    Article  Google Scholar 

  28. Ying, X., et al.: Mapping degeneration meets label evolution: learning infrared small target detection with single point supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15528–15538 (2023)

    Google Scholar 

  29. Yu, C., et al.: Infrared small target detection based on multiscale local contrast learning networks. Infrared Phys. Technol. 123, 104107 (2022)

    Article  Google Scholar 

  30. Yu, C., et al.: Pay attention to local contrast learning networks for infrared small target detection. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2022)

    Google Scholar 

  31. Yu, C., Liu, Y., Zhao, J., Shi, Z.: LR-Net: a lightweight and robust network for infrared small target detection. arXiv preprint arXiv:2408.02780 (2024)

  32. Yuan, S., et al.: Beyond full label: single-point prompt for infrared small target label generation. arXiv preprint arXiv:2408.08191 (2024)

  33. Yuan, S., Qin, H., Yan, X., Akhtar, N., Mian, A.: SCTransNet: spatial-channel cross transformer network for infrared small target detection. IEEE Trans. Geosci. Remote Sens. (2024)

    Google Scholar 

  34. Zhang, M., Zhang, R., Yang, Y., Bai, H., Zhang, J., Guo, J.: ISNet: shape matters for infrared small target detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 877–886 (2022)

    Google Scholar 

  35. Zhao, J., Shi, Z., Yu, C., Liu, Y.: Infrared small target detection based on adjustable sensitivity strategy and multi-scale fusion. arXiv preprint arXiv:2407.20090 (2024)

  36. Zhao, J., Shi, Z., Yu, C., Liu, Y.: Refined infrared small target detection scheme with single-point supervision. arXiv preprint arXiv:2408.02773 (2024)

  37. Zhao, J., Yu, C., Shi, Z., Liu, Y., Zhang, Y.: Gradient-guided learning network for infrared small target detection. IEEE Geosci. Remote Sens. Lett. (2023)

    Google Scholar 

Download references

Acknowledgement

This work was partially supported by the National Natural Science Foundation of China (Nos. 62401591, 62401589).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miao Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, B. et al. (2025). ICPR 2024 Competition on Resource-Limited Infrared Small Target Detection Challenge: Methods and Results. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. Competitions. ICPR 2024. Lecture Notes in Computer Science, vol 15334. Springer, Cham. https://doi.org/10.1007/978-3-031-80139-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-80139-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-80138-9

  • Online ISBN: 978-3-031-80139-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics