Abstract
Few-shot and continual learning face two well-known challenges in GANs: overfitting and catastrophic forgetting. Learning new tasks results in catastrophic forgetting in deep learning models. In the case of a few-shot setting, the model learns from a very limited number of samples (e.g. 10 samples), which can lead to overfitting and mode collapse. So, this paper proposes a Continual Few-shot Teacher-Student technique for the generative adversarial network (CFTS-GAN) that considers both challenges together. Our CFTS-GAN uses an adapter module as a student to learn a new task without affecting the previous knowledge. To make the student model efficient in learning new tasks, the knowledge from a teacher model is distilled to the student. In addition, the Cross-Domain Correspondence (CDC) loss is used by both teacher and student to promote diversity and to avoid mode collapse. Moreover, an effective strategy of freezing the discriminator is also utilized for enhancing performance. Qualitative and quantitative results demonstrate more diverse image synthesis and produce qualitative samples comparatively good to very stronger state-of-the-art models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdollahzadeh, M., Malekzadeh, T., Teo, C.T., Chandrasegaran, K., Liu, G., Cheung, N.M.: A survey on generative modeling with limited data, few shots, and zero shot. arXiv preprint arXiv:2307.14397 (2023)
Abuduweili, A., Li, X., Shi, H., Xu, C.Z., Dou, D.: Adaptive consistency regularization for semi-supervised transfer learning. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 6923–6932 (2021)
Aguinaldo, A., Chiang, P.Y., Gain, A., Patil, A., Pearson, K., Feizi, S.: Compressing gans using knowledge distillation. arXiv preprint arXiv:1902.00159 (2019)
Chen, P., Zhang, Y., Li, Z., Sun, L.: Few-shot incremental learning for label-to-image translation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 3697–3707 (2022)
Chenshen, W., HERRANZ, L., Xialei, L., et al.: Memory replay GANs: Learning to generate images from new categories without forgetting [C]. In: The 32nd International Conference on Neural Information Processing Systems, Montréal, Canada. pp. 5966–5976 (2018)
Duan, Y., Niu, L., Hong, Y., Zhang, L.: Weditgan: Few-shot image generation via latent space relocation. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 38, pp. 1653–1661 (2024)
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural information processing systems 30 (2017)
Israr, S.M., Zhao, F.: Customizing gan using few-shot sketches. In: Proceedings of the 30th ACM International Conference on Multimedia. pp. 2229–2238 (2022)
Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 4401–4410 (2019)
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 8110–8119 (2020)
Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A.A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. 114(13), 3521–3526 (2017)
Kumar, A., Chatterjee, S., Rai, P.: Bayesian structural adaptation for continual learning. In: International Conference on Machine Learning. pp. 5850–5860. PMLR (2021)
Le, C.P., Dong, J., Aloui, A., Tarokh, V.: Mode-aware continual learning for conditional generative adversarial networks. arXiv preprint arXiv:2305.11400 (2023)
Lesort, T., Caselles-Dupré, H., Garcia-Ortiz, M., Stoian, A., Filliat, D.: Generative models from the perspective of continual learning. In: 2019 International Joint Conference on Neural Networks (IJCNN). pp. 1–8. IEEE (2019)
Li, X., Tang, B., Li, H.: Adaer: An adaptive experience replay approach for continual lifelong learning. Neurocomputing 572, 127204 (2024)
Mallya, A., Davis, D., Lazebnik, S.: Piggyback: Adapting a single network to multiple tasks by learning to mask weights. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 67–82 (2018)
Mescheder, L., Geiger, A., Nowozin, S.: Which training methods for gans do actually converge? In: International conference on machine learning. pp. 3481–3490. PMLR (2018)
Mo, S., Cho, M., Shin, J.: Freeze the discriminator: a simple baseline for fine-tuning gans. arXiv preprint arXiv:2002.10964 (2020)
Noguchi, A., Harada, T.: Image generation from small datasets via batch statistics adaptation. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 2750–2758 (2019)
Ojha, U., Li, Y., Lu, J., Efros, A.A., Lee, Y.J., Shechtman, E., Zhang, R.: Few-shot image generation via cross-domain correspondence. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 10743–10752 (2021)
Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)
Park, K.H., Song, K., Park, G.M.: Pre-trained vision and language transformers are few-shot incremental learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 23881–23890 (2024)
Rajasegaran, J., Hayat, M., Khan, S.H., Khan, F.S., Shao, L.: Random path selection for continual learning. Advances in Neural Information Processing Systems 32 (2019)
Rebuffi, S.A., Bilen, H., Vedaldi, A.: Efficient parametrization of multi-domain deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 8119–8127 (2018)
Rusu, A.A., Rabinowitz, N.C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., Hadsell, R.: Progressive neural networks. arXiv preprint arXiv:1606.04671 (2016)
Seff, A., Beatson, A., Suo, D., Liu, H.: Continual learning in generative adversarial nets. arXiv preprint arXiv:1705.08395 (2017)
Seo, J., Kang, J.S., Park, G.M.: LFS-GAN: Lifelong Few-Shot Image Generation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 11356–11366 (2023)
Shi, J., Liu, W., Zhou, G., Zhou, Y.: Autoinfo gan: Toward a better image synthesis gan framework for high-fidelity few-shot datasets via nas and contrastive learning. Knowl.-Based Syst. 276, 110757 (2023)
Song, X., Shu, K., Dong, S., Cheng, J., Wei, X., Gong, Y.: Overcoming catastrophic forgetting for multi-label class-incremental learning. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 2389–2398 (2024)
Sushko, V., Wang, R., Gall, J.: Smoothness similarity regularization for few-shot gan adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 7073–7082 (2023)
Tao, X., Hong, X., Chang, X., Dong, S., Wei, X., Gong, Y.: Few-shot class-incremental learning. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 12183–12192 (2020)
Tian, S., Li, L., Li, W., Ran, H., Ning, X., Tiwari, P.: A survey on few-shot class-incremental learning. Neural Netw. 169, 307–324 (2024)
Varshney, S., Verma, V.K., Srijith, P., Carin, L., Rai, P.: Cam-gan: Continual adaptation modules for generative adversarial networks. Adv. Neural. Inf. Process. Syst. 34, 15175–15187 (2021)
Vladymyrov, M., Zhmoginov, A., Sandler, M.: Few-shot incremental learning using hypertransformers (2022)
Wang, L., Zhang, X., Su, H., Zhu, J.: A comprehensive survey of continual learning: theory, method and application. IEEE Transactions on Pattern Analysis and Machine Intelligence (2024)
Wang, Y., Yao, Q., Kwok, J.T., Ni, L.M.: Generalizing from a few examples: A survey on few-shot learning. ACM computing surveys (csur) 53(3), 1–34 (2020)
Wang, Y., Wu, C., Herranz, L., Van de Weijer, J., Gonzalez-Garcia, A., Raducanu, B.: Transferring gans: generating images from limited data. In: Proceedings of the European conference on computer vision (ECCV). pp. 218–234 (2018)
Wang, Z., Jiang, Y., Zheng, H., Wang, P., He, P., Wang, Z., Chen, W., Zhou, M., et al.: Patch diffusion: Faster and more data-efficient training of diffusion models. Advances in Neural Information Processing Systems 36 (2024)
Xiao, J., Li, L., Wang, C., Zha, Z.J., Huang, Q.: Few shot generative model adaption via relaxed spatial structural alignment. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 11204–11213 (2022)
Yan, S., Xie, J., He, X.: Der: Dynamically expandable representation for class incremental learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 3014–3023 (2021)
Yoon, J., Yang, E., Lee, J., Hwang, S.J.: Lifelong learning with dynamically expandable networks. arXiv preprint arXiv:1708.01547 (2017)
Zhai, M., Chen, L., Tung, F., He, J., Nawhal, M., Mori, G.: Lifelong gan: Continual learning for conditional image generation. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 2759–2768 (2019)
Zhao, Y., Ding, H., Huang, H., Cheung, N.M.: A closer look at few-shot image generation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 9140–9150 (2022)
Zhou, D.W., Wang, F.Y., Ye, H.J., Ma, L., Pu, S., Zhan, D.C.: Forward compatible few-shot class-incremental learning. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 9046–9056 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ali, M., Rossi, L., Bertozzi, M. (2025). CFTS-GAN: Continual Few-Shot Teacher Student for Generative Adversarial Networks. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15325. Springer, Cham. https://doi.org/10.1007/978-3-031-78389-0_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-78389-0_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-78388-3
Online ISBN: 978-3-031-78389-0
eBook Packages: Computer ScienceComputer Science (R0)