Abstract
With the growth of online fashion platforms and independent content creators, there is a growing interest in visually searching for similar clothing items as shown online. In real-world settings, clothes are often covered by other objects, making retrieval challenging. To make fashion image retrieval more robust, we explore fashion image retrieval with occlusion. We conducted various experiments on the In-shop Clothes Retrieval dataset, a subset of the DeepFashion benchmark. We constructed variations of the dataset with different occlusion types, including various sizes and locations of MSCOCO objects and object masks to simulate realistic occlusion circumstances. We evaluate the zero-shot and fine-tuned performance of the state-of-the-art models on these datasets and observe performance drop. We observe that fine-tuning models on one occluded dataset makes the model more robust to other occlusion types and reduces performance drop. The dataset used in this paper can be found in https://bit.ly/4749Mbo.
J. Sohn, H. Jung, Z. Yan, and V. Masti—These authors contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
An, G., Huo, Y., Yoon, S.E.: Hypergraph propagation and community selection for objects retrieval. Adv. Neural. Inf. Process. Syst. 34, 3596–3608 (2021)
An, X., Deng, J., Yang, K., Li, J., Feng, Z., Guo, J., Yang, J., Liu, T.: Unicom: Universal and compact representation learning for image retrieval. In: The Eleventh International Conference on Learning Representations (2022)
Arandjelović, R., Zisserman, A.: Three things everyone should know to improve object retrieval. In: 2012 IEEE conference on computer vision and pattern recognition. pp. 2911–2918. IEEE (2012)
Babenko, A., Lempitsky, V.: Efficient indexing of billion-scale datasets of deep descriptors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2055–2063 (2016)
Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin, A.: Emerging properties in self-supervised vision transformers (2021), https://arxiv.org/abs/2104.14294
Chum, O., Philbin, J., Sivic, J., Isard, M., Zisserman, A.: Total recall: Automatic query expansion with a generative feature model for object retrieval. In: 2007 IEEE 11th International Conference on Computer Vision. pp. 1–8. IEEE (2007)
Corbiere, C., Ben-Younes, H., Ramé, A., Ollion, C.: Leveraging weakly annotated data for fashion image retrieval and label prediction. In: Proceedings of the IEEE international conference on computer vision workshops. pp. 2268–2274 (2017)
Deng, J., Guo, J., Zafeiriou, S.: Arcface: Additive angular margin loss for deep face recognition. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) pp. 4685–4694 (2018), https://api.semanticscholar.org/CorpusID:8923541
Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: Additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 4690–4699 (2019)
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. In: International Conference on Learning Representations (2020)
Ermolov, A., Mirvakhabova, L., Khrulkov, V., Sebe, N., Oseledets, I.: Hyperbolic vision transformers: Combining improvements in metric learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 7409–7419 (2022)
Gordo, A., Almazan, J., Revaud, J., Larlus, D.: End-to-end learning of deep visual representations for image retrieval. Int. J. Comput. Vision 124(2), 237–254 (2017)
Gordo, A., Radenovic, F., Berg, T.: Attention-based query expansion learning. In: European Conference on Computer Vision. pp. 172–188. Springer (2020)
Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: 2006 IEEE computer society conference on computer vision and pattern recognition (CVPR’06). vol. 2, pp. 1735–1742. IEEE (2006)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 770–778 (2016)
Iscen, A., Tolias, G., Avrithis, Y., Chum, O.: Mining on manifolds: Metric learning without labels. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 7642–7651 (2018), https://api.semanticscholar.org/CorpusID:4466042
Kan, S., Cen, Y., Li, Y., Mladenovic, V., He, Z.: Relative order analysis and optimization for unsupervised deep metric learning. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) pp. 13994–14003 (2021), https://api.semanticscholar.org/CorpusID:235691639
Kim, S., Kim, D., Cho, M., Kwak, S.: Self-taught metric learning without labels. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) pp. 7421–7431 (2022), https://api.semanticscholar.org/CorpusID:248512812
Li, L., Zhang, T., Kang, Z., Jiang, X.: Mask-fpan: Semi-supervised face parsing in the wild with de-occlusion and uv gan. Computers & Graphics 116, 185–193 (2023)
Li, Y., Kan, S., He, Z.: Unsupervised deep metric learning with transformed attention consistency and contrastive clustering loss. ArXiv abs/2008.04378 (2020), https://api.semanticscholar.org/CorpusID:221095511
Lin, T.Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft coco: Common objects in context (2015)
Lin, Y.L., Tran, S., Davis, L.S.: Fashion outfit complementary item retrieval. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 3311–3319 (2020)
Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 11976–11986 (2022)
Liu, Z., Luo, P., Qiu, S., Wang, X., Tang, X.: Deepfashion: Powering robust clothes recognition and retrieval with rich annotations. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2016)
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)
Muja, M., Lowe, D.G.: Scalable nearest neighbor algorithms for high dimensional data. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2227–2240 (2014)
Naka, R., Katsurai, M., Yanagi, K., Goto, R.: Fashion style-aware embeddings for clothing image retrieval. In: Proceedings of the 2022 International Conference on Multimedia Retrieval. pp. 49–53 (2022)
Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec, M., Khalidov, V., Fernandez, P., Haziza, D., Massa, F., El-Nouby, A., et al.: Dinov2: Learning robust visual features without supervision. arXiv preprint arXiv:2304.07193 (2023)
Oquab, M., Darcet, T., Moutakanni, T., Vo, H.V., Szafraniec, M., Khalidov, V., Fernandez, P., HAZIZA, D., Massa, F., El-Nouby, A., Assran, M., Ballas, N., Galuba, W., Howes, R., Huang, P.Y., Li, S.W., Misra, I., Rabbat, M., Sharma, V., Synnaeve, G., Xu, H., Jegou, H., Mairal, J., Labatut, P., Joulin, A., Bojanowski, P.: DINOv2: Learning robust visual features without supervision. Transactions on Machine Learning Research (2024), https://openreview.net/forum?id=a68SUt6zFt
Park, S., Shin, M., Ham, S., Choe, S., Kang, Y.: Study on fashion image retrieval methods for efficient fashion visual search. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. pp. 0–0 (2019)
Park, S., Lee, H., Yoo, J.H., Kim, G., Kim, S., et al.: Partially occluded facial image retrieval based on a similarity measurement. Mathematical Problems in Engineering 2015 (2015)
Philbin, J., Zisserman, A.: Object mining using a matching graph on very large image collections. In: 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing. pp. 738–745. IEEE (2008)
Qian, Q., Shang, L., Sun, B., Hu, J., Li, H., Jin, R.: Softtriple loss: Deep metric learning without triplet sampling. 2019 IEEE/CVF International Conference on Computer Vision (ICCV) pp. 6449–6457 (2019), https://api.semanticscholar.org/CorpusID:202558557
Radenović, F., Tolias, G., Chum, O.: Fine-tuning cnn image retrieval with no human annotation. IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1655–1668 (2018)
Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face recognition and clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 815–823 (2015)
Shaker, A.M., Maaz, M., Rasheed, H.A., Khan, S., Yang, M., Khan, F.S.: Swiftformer: Efficient additive attention for transformer-based real-time mobile vision applications. 2023 IEEE/CVF International Conference on Computer Vision (ICCV) pp. 17379–17390 (2023), https://api.semanticscholar.org/CorpusID:257766532
Shiau, R., Wu, H.Y., Kim, E., Du, Y.L., Guo, A., Zhang, Z., Li, E., Gu, K., Rosenberg, C., Zhai, A.: Shop the look: Building a large scale visual shopping system at pinterest. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 3203–3212 (2020)
Sohn, K.: Improved deep metric learning with multi-class n-pair loss objective. Advances in neural information processing systems 29 (2016)
Sun, Y., Cheng, C., Zhang, Y., Zhang, C., Zheng, L., Wang, Z., Wei, Y.: Circle loss: A unified perspective of pair similarity optimization. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) pp. 6397–6406 (2020), https://api.semanticscholar.org/CorpusID:211296865
Tan, M., Le, Q.: EfficientNet: Rethinking model scaling for convolutional neural networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 6105–6114. PMLR (09–15 Jun 2019), https://proceedings.mlr.press/v97/tan19a.html
Tian, Y., Newsam, S., Boakye, K.: Fashion image retrieval with text feedback by additive attention compositional learning. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 1011–1021 (2023)
Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention (2021), https://arxiv.org/abs/2012.12877
Tu, C.T., Lee, K.H.: Occluded face recovery by image retrieval. In: 2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS). pp. 1–2. IEEE (2021)
Voo, K.T., Jiang, L., Loy, C.C.: Delving into high-quality synthetic face occlusion segmentation datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4711–4720 (2022)
Yan, C., Yan, K., Zhang, Y., Wan, Y., Zhu, D.: Attribute-guided fashion image retrieval by iterative similarity learning. In: 2022 IEEE International Conference on Multimedia and Expo (ICME). pp. 1–6. IEEE (2022)
Yan, J., Luo, L., Deng, C., Huang, H.: Unsupervised hyperbolic metric learning. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) pp. 12460–12469 (2021), https://api.semanticscholar.org/CorpusID:235693274
Zhai, A., Wu, H.Y.: Classification is a strong baseline for deep metric learning. In: British Machine Vision Conference (2018), https://api.semanticscholar.org/CorpusID:199442350
Zhu, J., Huang, H., Deng, Q.: Fashion image retrieval with multi-granular alignment. arXiv preprint arXiv:2302.08902 (2023)
Acknowledgement
This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (RS-2022-00143911, AI Excellence Global Innovative Leader Education Program)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sohn, J., Jung, H., Yan, Z., Masti, V., Li, X., Raj, B. (2025). Fashion Image Retrieval with Occlusion. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15321. Springer, Cham. https://doi.org/10.1007/978-3-031-78305-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-78305-0_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-78304-3
Online ISBN: 978-3-031-78305-0
eBook Packages: Computer ScienceComputer Science (R0)