Application of Benford’s Law to the Identification of Non-authentic Digital Images | SpringerLink
Skip to main content

Application of Benford’s Law to the Identification of Non-authentic Digital Images

  • Conference paper
  • First Online:
Advances in Mobile Computing and Multimedia Intelligence (MoMM 2024)

Abstract

This study evaluated Benford’s law for detecting non-authentic digital images by analyzing the first digits of pixel values after a discrete cosine transform (DCT). We analyzed 137 pairs of authentic and modified JPEGs using ROC curves, k-means clustering, chi-squared tests, and PCA. The results showed AUC values near 0.5, indicating low classification performance. The k-means algorithm had 49% precision with low completeness, and PCA revealed a significant overlap between the authentic and manipulated images. These findings suggest the limited effectiveness of Benford’s law alone, highlighting the need to integrate advanced image-processing methods and explore additional pixel-distribution features for the effective detection of non-authentic images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8293
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Guera, D., Delp, E.J.: Deepfake video detection using recurrent neural networks. In: 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Auckland, New Zealand, pp. 1–6. IEEE (2018). https://doi.org/10.1109/AVSS.2018.8639163

  2. Nightingale, S.J., Wade, K.A., Watson, D.G.: Can people identify original and manipulated photos of real-world scenes? Cogn. Res. 2(1), 30 (2017). https://doi.org/10.1186/s41235-017-0067-2

    Article  Google Scholar 

  3. Tolosana, R., Vera-Rodriguez, R., Fierrez, J., Morales, A., Ortega-Garcia, J.: Deepfakes and beyond: a survey of face manipulation and fake detection. Inf. Fusion 64, 131–148 (2020). https://doi.org/10.1016/j.inffus.2020.06.014

    Article  Google Scholar 

  4. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. arXiv http://arxiv.org/abs/1710.10196 (2018). Accessed 09 Feb 2024

  5. Vaccari, C., Chadwick, A.: Deepfakes and disinformation: exploring the impact of synthetic political video on deception, uncertainty, and trust in news. Soc. Media + Soc. 6(1), 205630512090340 (2020). https://doi.org/10.1177/2056305120903408

  6. Verdoliva, L.: Media forensics and DeepFakes: an overview. IEEE J. Sel. Top. Signal Process. 14(5), 910–932 (2020). https://doi.org/10.1109/JSTSP.2020.3002101

    Article  Google Scholar 

  7. Farid, H.: Image forgery detection. IEEE Signal Process. Mag. 26(2), 16–25 (2009). https://doi.org/10.1109/MSP.2008.931079

    Article  Google Scholar 

  8. Abbott, J.: The Digital Darkroom: The Definitive Guide to Photo Editing. Ilex Press, Lewes (2021)

    Google Scholar 

  9. De Kok, R., Rotundo, G.: Benford networks. Stats 5(4), 934–947 (2022). https://doi.org/10.3390/stats5040054

    Article  Google Scholar 

  10. Anderson, K.M., Dayaratna, K., Gonshorowski, D., Miller, S.J.: A new benford test for clustered data with applications to American elections. Stats 5(3), 841–855 (2022). https://doi.org/10.3390/stats5030049

    Article  Google Scholar 

  11. Singh, N., Bansal, R.: Analysis of Benford’s law in digital image forensics. In: 2015 International Conference on Signal Processing and Communication, ICSC 2015, pp. 413–418 (2015). https://doi.org/10.1109/ICSPCom.2015.7150688

  12. Póth, M., Trpovski, Ž.: Analysis of JPEG digital image compression process. J. Appl. Tech. Educ. Sci. 9(4) (2019). ISSN: 2560-5429. https://doi.org/10.24368/JATES.V9I4.119

  13. Parnak, A., Baleghi Damavandi, Y., Kazemitabar, S.J.: A novel image splicing detection algorithm based on generalized and traditional Benford’s law. IJE 35(04), 626–634 (2022). https://doi.org/10.5829/IJE.2022.35.04A.02

    Article  Google Scholar 

  14. Varga, D.: Analysis of Benford’s law for no-reference quality assessment of natural, screen-content, and synthetic images. Electronics 10(19), 2378 (2021). https://doi.org/10.3390/electronics10192378

    Article  Google Scholar 

  15. Zago, J.G., Antonelo, E.A., Baldissera, F.L., Saad, R.T.: Benford’s law: what does it say on adversarial images? J. Vis. Commun. Image Represent. 93, 103818 (2022)

    Article  Google Scholar 

  16. Bonettini, N., Bestagini, P., Milani, S., Tubaro, S.: On the use of Benford’s law to detect GAN-generated images. In: 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, pp. 5495–5502. IEEE (2021). https://doi.org/10.1109/ICPR48806.2021.9412944

  17. Kazemitabar, J.: Double-crossing Benford’s law. arXiv http://arxiv.org/abs/2105.09812 (2021). Accessed 06 Feb 2024

  18. Satapathy, G., Bhattacharya, G., Puhan, N.B., Ho, A.T.S.: Generalized Benford’s law for fake fingerprint detection. In: 2020 IEEE Applied Signal Processing Conference (ASPCON), Kolkata, India, pp. 242–246. IEEE (2020). https://doi.org/10.1109/ASPCON49795.2020.9276660

  19. Fu,D., Shi, Y.Q., Su, W.: A generalized Benford’s law for JPEG coefficients and its applications in image forensics. Presented at the Electronic Imaging 2007, San Jose, CA, United States, p. 65051L (2007). https://doi.org/10.1117/12.704723

  20. Perez-Gonzalez, F., Heileman, G.L., Abdallah, C.T.: Benford’s lawin image processing. In: 2007 IEEE International Conference on Image Processing, San Antonio, TX, USA, pp. I-405–I-408. IEEE (2007). https://doi.org/10.1109/ICIP.2007.4378977

  21. Frick, R.A., Liu, H., Steinebach, M.: Detecting double compression and splicing using Benfords first digit law. In: Proceedings of the 15th International Conference on Availability, Reliability and Security, Virtual Event Ireland, pp. 1–9. ACM (2020). https://doi.org/10.1145/3407023.3409200

  22. Bodke, M., Mishra, D., Vasani, K., Janjua, J.: Analysis of Benford’s law for image processing, vol. 9, no. 6, p. 7 (2021)

    Google Scholar 

  23. Iorliam, A., Orgem, E., Shehu, Y.I.: An investigation of Benford’s law divergence and machine learning techniques for intra-class separability of fingerprint images. Gazi Univ. J. Sci. Part A: Eng. Innov. 9(3), 211–224 (2022). https://doi.org/10.54287/gujsa.1077430

  24. Iorliam, A., Ho, A.T.S., Waller, A., Zhao, X.: Using Benford’s law divergence and neural networks for classification and source identification of biometric images. In: Shi, Y.Q., Kim, H.J., Perez-Gonzalez, F., Liu, F. (eds.) IWDW 2016. LNCS, vol. 10082, pp. 88–105. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53465-7_7

    Chapter  Google Scholar 

  25. Goh, C.: Applying visual analytics to fraud detection using Benford’s law. J. Corp. Account. Finance 31(4), 202–208 (2020). https://doi.org/10.1002/jcaf.22440

    Article  Google Scholar 

  26. Giudice, O., Guarnera, L., Battiato, S.: Fighting deepfakes by detecting GAN DCT anomalies. J. Imaging 7(8), 128 (2021). https://doi.org/10.3390/jimaging7080128

    Article  Google Scholar 

  27. Werner, P., Lopez-Martinez, D., Walter, S., Al-Hamadi, A., Gruss, S., Picard, R.W.: Automatic recognition methods supporting pain assessment: a survey. IEEE Trans. Affect. Comput. 13(1), 530–552 (2022). https://doi.org/10.1109/TAFFC.2019.2946774

    Article  Google Scholar 

  28. Von Borries, G.F., Quadros, A.V.C.: ROC app: an application to understand ROC curves. Braz. J. Biom. 40(2) (2022). https://doi.org/10.28951/bjb.v40i2.566

  29. Parodi, S., Verda, D., Bagnasco, F., Muselli, M.: The clinical meaning of the area under a receiver operating characteristic curve for the evaluation of the performance of disease markers. Epidemiol. Health 44, e2022088 (2022). https://doi.org/10.4178/epih.e2022088

    Article  Google Scholar 

  30. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31(8), 651–666 (2010). https://doi.org/10.1016/j.patrec.2009.09.011

    Article  Google Scholar 

  31. Celebi, M.E., Kingravi, H.A., Vela, P.A.: A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Syst. Appl. 40(1), 200–210 (2013). https://doi.org/10.1016/j.eswa.2012.07.021

    Article  Google Scholar 

  32. Sharpe, D.: Your chi-square test is statistically significant: now what? 20(8) (2015)

    Google Scholar 

  33. Kurita, T.: Principal Component Analysis (PCA). In: Kurita, T. (ed.) Computer Vision, pp. 1–4. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-03243-2_649-1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslaw Kobiela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kobiela, J., Dzierwa, P. (2025). Application of Benford’s Law to the Identification of Non-authentic Digital Images. In: Delir Haghighi, P., Fedushko, S., Kotsis, G., Khalil, I. (eds) Advances in Mobile Computing and Multimedia Intelligence. MoMM 2024. Lecture Notes in Computer Science, vol 15341. Springer, Cham. https://doi.org/10.1007/978-3-031-78049-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78049-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78048-6

  • Online ISBN: 978-3-031-78049-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics