Node Pressure Prediction by Aggregating Long-Range Information | SpringerLink
Skip to main content

Node Pressure Prediction by Aggregating Long-Range Information

  • Conference paper
  • First Online:
Internet of Things – ICIOT 2024 (SCF 2024 - ICIOT 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15427))

Included in the following conference series:

  • 73 Accesses

Abstract

Predicting node pressure accurately is of paramount importance for the management of water distribution networks (WDNs). Recent advances have highlighted the efficacy of graph neural networks (GNNs), tailored for data with inherent graph structures, in addressing this challenge. However, the performance of extant GNN-based approaches is constrained by their limited capacity to harness long-range dependencies within the network. To address this limitation, we introduce a novel long-range adaptive convolution network. Inspired by the graph kernel, our method possesses a broad receptive field, while the flexibility of information aggregation is enhanced through the attention mechanism. Additionally, we incorporate residuals specifically engineered for WDN applications to further refine our prediction accuracy. Our comprehensive evaluations on three real-world WDN datasets reveal that our method consistently surpasses existing benchmarks. We have made the code and experimental datasets publicly accessible via a GitHub repository (https://github.com/Haldate-Yu/GAL-WDN).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ashraf, I., Hermes, L., Artelt, A., Hammer, B.: Spatial graph convolution neural networks for water distribution systems. In: Cremilleux, B., Hess, S., Nijssen, S. (eds.) International Symposium on Intelligent Data Analysis, vol. 13876, pp. 29–41. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30047-9_3

  2. Bhatti, U.A., Tang, H., Wu, G., Marjan, S., Hussain, A.: Deep learning with graph convolutional networks: an overview and latest applications in computational intelligence. Int. J. Intell. Syst. 2023, 1–28 (2023)

    Article  Google Scholar 

  3. Fouss, F., Francoisse, K., Yen, L., Pirotte, A., Saerens, M.: An experimental investigation of kernels on graphs for collaborative recommendation and semisupervised classification. Neural Netw. 31, 53–72 (2012)

    Article  Google Scholar 

  4. Garzón, A., Kapelan, Z., Langeveld, J., Taormina, R.: Machine learning-based surrogate modeling for urban water networks: review and future research directions. Water Resour. Res. 58(5), e2021WR031808 (2022)

    Google Scholar 

  5. Hajgató, G., Gyires-Tóth, B., Paál, G.: Reconstructing nodal pressures in water distribution systems with graph neural networks. arXiv preprint arXiv:2104.13619 (2021)

  6. Hong, D., Gao, L., Yao, J., Zhang, B., Plaza, A., Chanussot, J.: Graph convolutional networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 59(7), 5966–5978 (2021)

    Article  Google Scholar 

  7. Jin, D., et al.: Universal graph convolutional networks. In: Advances in Neural Information Processing Systems, vol. 34, pp. 10654–10664 (2021)

    Google Scholar 

  8. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: 5th International Conference on Learning Representations (2017)

    Google Scholar 

  9. Klicpera, J., Weißenberger, S., Günnemann, S.: Diffusion improves graph learning. In: Advances in Neural Information Processing Systems, vol. 32, pp. 13333–13345 (2019)

    Google Scholar 

  10. Meirelles, G., Manzi, D., Brentan, B., Goulart, T., Luvizotto, E.: Calibration model for water distribution network using pressures estimated by artificial neural networks. Water Resour. Manage. 31, 4339–4351 (2017)

    Article  Google Scholar 

  11. Petersen, K.B., Pedersen, M.S., et al.: The matrix cookbook. Tech. Univ. Denmark 7(15), 510 (2008)

    Google Scholar 

  12. Rossman, L., Woo, H., Tryby, M., Shang, F., Janke, R., Haxton, T.: EPANET 2.2 user’s manual, water infrastructure division. Center for Environmental Solutions and Emergency Response (2020)

    Google Scholar 

  13. Truong, H., Tello, A., Lazovik, A., Degeler, V.: Graph neural networks for pressure estimation in water distribution systems. arXiv preprint arXiv:2311.10579 (2023)

  14. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations (2018)

    Google Scholar 

  15. Wang, C., Tian, R., Hu, J., Ma, Z.: A trend graph attention network for traffic prediction. Inf. Sci. 623, 275–292 (2023)

    Article  Google Scholar 

  16. Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph convolutional networks. In: International Conference on Machine Learning, pp. 6861–6871 (2019)

    Google Scholar 

  17. Wu, S., Sun, F., Zhang, W., Xie, X., Cui, B.: Graph neural networks in recommender systems: a survey. ACM Comput. Surv. 55(5), 1–37 (2022)

    Article  Google Scholar 

  18. Wu, Z., Jain, P., Wright, M.A., Mirhoseini, A., Gonzalez, J.E., Stoica, I.: Representing long-range context for graph neural networks with global attention. In: Advances in Neural Information Processing Systems, vol. 34, pp. 13266–13279 (2021)

    Google Scholar 

  19. Yang, L., et al.: Difference residual graph neural networks. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 3356–3364 (2022)

    Google Scholar 

  20. Zhang, W., et al.: Graph attention multi-layer perceptron. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 4560–4570 (2022)

    Google Scholar 

  21. Zhu, H., Koniusz, P.: Simple spectral graph convolution. In: 9th International Conference on Learning Representations (2021)

    Google Scholar 

  22. Zitnik, M., Agrawal, M., Leskovec, J.: Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34(13), i457–i466 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China (No. 2021YFB3300200), National Natural Science Foundation of China (No. 92267105), Guangdong Basic and Applied Basic Research Foundation (No. 2023B1515130002), Guangdong Special Support Plan (No. 2021TQ06X990), Shenzhen Basic Research Program (No. JCYJ20220818101610023, KJZD20230923113800001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaofan Chen or Kejiang Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, P., Yu, W., Zhou, X., Chen, X., Ye, K. (2025). Node Pressure Prediction by Aggregating Long-Range Information. In: Zhang, S., Zhang, LJ. (eds) Internet of Things – ICIOT 2024. SCF 2024 - ICIOT 2024. Lecture Notes in Computer Science, vol 15427. Springer, Cham. https://doi.org/10.1007/978-3-031-77003-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-77003-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-77002-9

  • Online ISBN: 978-3-031-77003-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics